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Introductions




Scope of the talk

e Sequencing and k-mers

e Focus: historical aspects

e How we got to today

e Technical depth is later in the course



Genome sequencing

assembly




Genome sequencing

assembly

genome profiling

13,000,000 individual plants in the harvest;
on average each weighted 8439



To get coverage, we need to identify
what sequences belong together!



How to look at the “bag of reads™?!

To get coverage, we need to identify
what sequences belong together!

How Al sees sequencing...



Imagine just two reads... Are they from the same location?

Try all possible overlaps?




Imagine just two reads... Are they from the same location?

What if one has a sequencing error?
Do we discard all the reads that have
an error?



Imagine just two reads... Are they from the same location?

What if one has a sequencing error?
Do we discard all the reads that have
an error?

This is not a problem with one good solution



Imagine just two reads... Are they from the same location?

What if one has a sequencing error?
Do we discard all the reads that have
an error?

This is not a problem with one good solution
...but k-mers are part of nearly all existing ones!



What is a k-mer?
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https://github.com/KamilSJaron/k-mer-approaches-for-bio
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AGTCCAT

diversity-genomics/wiki/Concept-of-k-mers




History of the term

N-gram (Shannon, 1948)

k-tuple (Drmanac et al. 1991; Idury and Waterman 1995)
ktup (Lipman and Pearson 1985)

L-tuple (Idury and Waterman 1995)

€-tuple (Li and Waterman 2003)

k-word (Lippert et al. 2002; Li and Waterman 2003)
word (Reinert et al. 2000)

11-mers (Drmanac et al. 1989)

w-mers (BLAST, 1990)

k-mer (MUMmer, 1999)
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etymology
slides

Jenike et al, 2025



Origins of k-mer concepts in early bioinformatics




Historical Roots

N.G. de Bruijn (1946) C. Shannon (1948)
de Bruijn sequences Information theory

Construct a short text that contains Predict what character is likely to
all k-mers follow a given k-mer




de Bruijn sequence

Alphabet: {0, 1}
Subsequence length: 2

e A sequence where every possible k-tuple

Subsequences:
appears (0,0} (1,0
e Its length must be: |alphabet|*k —{0, 1}7 {1, 1}
e Not a lot of practical uses ) r
De Bruijn sequence:

b Je—
{0,0,1, 1}

Math interests:

e How to construct it
e Counting how many possible sequences



Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379-423, 623-656, July, October, 1948.

Shannon’s theory

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

e Given frequencies of English letters SECONDLETER

E 1 S A N R T O L U b C G M P H Y

e Generate a “plausible” text, drawing at random:
o OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ...
e Now knowing the 2-mer frequencies in English texts:
o ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ...

TOTwPveEeNrv—~0Z0>—-m

FIRST LETTER

e The 3-mer frequencies:
o IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID ...
e Take-home: k-mer frequencies encode information

e n consecutive words, not letters:
o n=2: THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT ...



How did Shannon call k-mers? N-grams

gram means “small weight”

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFIEYVKCQSGHYD QPAAMKBZAACIBZL-
HIQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragram, ... , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further struc- C I a u d e S h a n n O n

ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

—A Mathematical Theory of Communication, 1948




LCLHNOIDYICS 1O SUppoit auvalitco i biviogy
and medicine, most notably the creation of
protein and nucleic acid databases and tools to

. . . . interrogate the databases. She originated one of
Wh O I ntrOd U Ced k- m e rS to b I O I nfo rm atl CS ? the first substitution matrices, point accepted
mutations (PAM). The one-letter code used for
amino acids was developed by her, reflecting an

Margaret DayhOff: attempt to reduce the size of the data files used

to describe amino acid sequences in an era of

e k-mer search in “COMPROTEIN: A Computer Program punch-card computing.
to Aid Primary Protein Structure Determination.” 1962 Margaret Oakley Dayhoff

Proceedings—Fall Joint Computer Conference, 1962 / 271

For N=2,3,0r 4
search all the
> peptides for N
amino acids known

to occur together. ‘ I
R

Born Margaret Belle Oakley
March 11, 1925
Philadelphia,




It's a k-mer world

@\/

Sequence

Alignment

Genome
assembly

Metagenomics

S\‘e‘c\'\‘\ng



Early Applications: Similarity searches in the 1980s

e Smith-Waterman (1981): local alignment (no k-mers)

e FASTA (1985): heuristic for faster search

O used short exact matches as seeds — conceptually close to k-mers.

e GenBank launched (1979): early sequence databases

e Conceptual precursors to k-mers : “motifs” & “short matches”



FASTA and the use of 2-mers as seeds

e FASTA (Lipman, Pearson, 1985)

o k=2 for proteins
o k=4,6 for nucleotides

1) Identifies regions with high density of k-mer matches
2) Run Smith-Waterman alignment on them

The k-mer matches do not serve as anchors for the alignment.
(They serve to “light up” the right region(s))



“~tuples” or “words”? Why don’t you pick one? TE

“ordered list” or “finite sequence”

“k-tuple”
“‘L-tuple”
“ktup”

“U-tuple”

“k-word

“word”

Michael Waterman

Idury new algorithm for DNA sequence assembly. J Comput Biol.
1995;2: 294306

Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science.

mating the Repeat Structure and Length of DNA Sequences
gs.2003;13: 1916-1922.




ref

k-mers as Seeds in Alignment — —

e Query —— —

e Reference

e Seed: short sequence (possibly a k-mer) found in both the query and
reference

e Minimizers: covered later in the course




Seed-and-extend approaches for alignment

1. Find seeds

ref
2. Filter (or chain) seeds
3. Extend alignment to the left/right of
seeds using exact algorithm query

(Smith-Waterman)

o Seeding e Filtering

Reference

47 5 T Reference
s 9 chain (selected) CATCGTC - - GCTAAGCAGTGAC
CAT - - TATCGCTACGTAGT - AC

posiion tble Teng et al, 2023



BLAST: longer seeds

e BLAST (Altschul, Gish, Miller, Myers, Lipman, 1990)
e Improves upon FASTA

e Uses k-mers as seeds
o k=11,12 for blastn

e Then runs Smith-Waterman around the seeds

Compare to FASTA which has k=6.



““mer” comes from “meros” which means “a share”

. _ o oligomers
1968: “Unique Sequences in Tobacco Mosaic Virus®  «w_mer” and “O-mer”

|s Stanley Mandeles
father of k-mers?!

1990: BLAST uses “w-mers”

- Is the “w” for “words” here?

1999: MUMmer

2010: Jellyfish; k-mers reach fixation



Balancing k-mer size for alignment speed vs. sensitivity

e Long k-mer seeds:
o high specificity (= few candidate alignment locations)

Median number of occurrences of seeds

o low sensitivity (= less likely to find the right |Ocati0n) from the reads in the reference genome
e Short k-mer seeds: e
o low specificity (= many potentially wrong options) . i ey

o high sensitivity (= more likely to find the right location)

ref

query

Seed weight

Ekim et al, 2023 (mapquik, human genome)



k-mers in various alignment settings

e Reads-vs-genome
o Bowtie1 (Langmead et al, 2009)
m k=28 as seed, with 2 mismatches

e (Genome-vs-genome
o LASTZ (Bob Harris)
m Uses spaced seeds, k=19 with 8 mismatches
o  YASS (Noe, Kucherov, 2005)
m Uses spaced seeds too

e Protein-vs-protein
o  DIAMOND (Bunchfink, Huson, 2015)
m Uses a set of spaced seeds, k=77



Methods with even shorter k-mers (k=4, 5, 6, ..)

e Metagenomic binning tools
They look at nucleotide composition, to group contigs into genomes
TETRA (Teeling et al, 2004): k=4
Generalizes over GC content (k=1)
Many others too: MetaBAT2, MaxBin 2
e Metagenomics taxonomic classification
o QIIME2’s g2-feature-classifier (Bukolich et al, 2018): k>=4
o Naive Bayes classifier on k-mer counts
e \irus binning
o VirFinder (Ren et al, 2017): k=4
e (Genome masking

o  Komplexity (Clark 2019): k=4
o Removes low-complexity regions

o O O O



k-mers for determining genome structure

e (Genome size and repeats (Li and Waterman, 2003)
o Models k-mer histograms (without calling them that) as a mixture of Poisson distributions
o Reconstructs repeat consensus sequences(!)
e Many follow-up works in modeling genome histograms
o (Chor et al 2009, Liu et al 2013, Chikhi and Medvedev 2014, SPAdes assembler, Sun et al
2018, etc..)

e CRT (Bland et al, 2007)

o Finds location of CRISPRs using exact k-mer matching

e Tallymer (Kurtz et al, 2009)

o Find Transposible Elements in plant genomes using k-mers



IDURY AND WATERMAN

k-mers in Genome Assembly E;: e @
e Sequencing by Hybridization (1987) AT ?2 GC  CA

FIG. 2. Graph G for ATGTGCCGCA.

o  Basically a microarray of k-mers
o k=8
e String graphs and de Bruijn graphs, both introduced at the same conference (DIMACS
1994)

o  Ildury-Waterman (1995 journal version)

m de Bruijn graph theory for assembly (without naming it)
e EULER (Pevzner, Tang, Waterman 2001)
o first assembly tool using a dBG

e Many many more tools: EULER-SR, Velvet, SOAPdenovo, SPAdes,
De Bruijn graphs, unitigs, contigs: will be covered later in the course (Logan lecture)

? Choice of best k: also covered later (“In-depth understanding” lecture)



k-mers vs string graphs

e Early-day question of which formalism is most adequate for assembly:
o k-mers?
o orfull reads?

e (Still today)

it - Information Technology 2016; 58(3): 126-132 DE GRUYTER OLDENBOURG
Special Issue Open Access
1994 2009 2018? Eugene W. Myersij®

A history of DNA sequence assembly

DOI10.1515/itit-2015-0047 Unknown Target (many copies)
Received October 26, 2015; accepted March 9, 2016
l Shotgun and Sequence

Abstract: DNA sequence assembly is a rich combinatorial
< 4 « y -

problem that arose with the first DNA sequencing projects \
in the early 80’s. Here we give a short history of the progres- S — T Insent
N . . . sion of algorithmic ideas used to solve the de novo problem / akm,
St"ng graph de Bru Ijn graph St"ng graph agaln of inferring a genome given a large sampling of substrings Reads

covering it. This classic inverse problem is compounded

by a variety of experimental features and artifacts that
Sanger/454 Short reads Long reads must be considered in any realistic solution. While current

methods produce very good results, the perfect assembler  Contig

Assembler

has yet to be built. 2y < e

e mar 4 —— =
Keywords: Shotgun sequencing, shortest common super- N i e—) W=
string, string graph, de Bruijn graph. Consensus

ACM CCS: Applied computing — Life and medical sci-  Figure 1: DNA Shotgun Sequencing.

nnnnn R SUSEESTIE IR, § ROV POSaig iSRRI AL SR




kK-mers in more recent genome assemblers

k-mers GGAC ACTGy
7 CTGA
([ VerkkO, LJA ACTG TACC GGAC Input size: 7GA \T\GAG
CTGA ACCA 13 Kkemiers atbe de Bruijn -\
o  Apply long k-mers to long read Base-space TGAG ~ CCAT cant > { Tgraph oler
assembly GIA  ATGG Mo
ACCA_ tacc<
e rust-mdBG A =
; Reference ACTGAGTACCATGGAC
o Uses k-mers over a different genome ' oy orac
alphabet (minimizers) e s L —
! AC AG AC AT AC
o State-of-the-art metagenomics e Diae iy
Minimizer-space o Input size: >
assembly based on mdBG il 3 minmrs
m3m2m4 i 5 nmt|n|m|zers z
k'-min-mers m,m,m, — 18 nt de Bruijn graph




k-mers for checking genome assembly quality

(a)z.s 1e7 . K-mer comparison plot
e KAT (Mapleson et al, 2016) p Ox
o Compares k-mers in short reads vs 5% ;z
k-mers in assembly g 15 3x
o  Or GC-content vs k-mer frequeny é - gz
e QUAST-LG (Mikheenko et al, 2018) 20_5 o
o Uses k-mers to estimate completeness 2
e Mercury (Rhie et al, 2020) "% o 200
o Improves upon KAT . mermaeien 4
o Extended to phased diploid genomes , g
o Generates a consensus quality QV value e WEE;}E?)

1.5%10° 7.50x10°

1.00x107

hapmer

-?rlve @O

1.25%107
Assembly
& | so

s duri moqn ® ¢
You'll see a lot of this during next week O 50x10° 10x10° 1.6x10° 20410°

col0.hapmer

1.0x10°

cvio.

5.0x10°




K-mer storage optimization

de Bruijn graph
TG

AG ~CT

2T

Exact encoding of the de Bruijn graph using a hash table

Tl nodes bits/node

4 x 4 )
TG Hash table =28 bits
AC ~0.6
CT load factor

The birth of a line of research (2011-2012)

- Conway-Bromage (2011) proposed to encode dBG as bit vector
- Bit vector is of size 4%, 1s at positions of k-mers

- Efficient succinct encoding (Okanohara et al 2006): O(nk)

- Info-theoretically optimal

RESEARCH-ARTICLE  OPEN AC

Data Structures to Represent a Set of k-long DNA
Sequences

Authors: Rayan Chikhi Jan Holub, Paul Medvedev Authors Info & Affiliations

ACM Computing Surveys, Volume 54, Issue 1 » April 2021 « Article No.: 17, pp 1-22 e https://doi.org/10.1145/3445967

Published: 08 March 2021

Exact encoding of the de Bruijn graph using a bit vector

A=00b
c=01b

AC=0001b
c1=0111b

6=10b
r=11b (0100000100001010]

16=1110b S S ST S SOOI
1A=1100b = 16 bits




k-mer storage, on disk

e No dedicated file format, until recently
e KFF (Kmer File Format) (Dufresne et al, 2022)
o Implemented in KMC, DSK, some other tools
Otherwise:
e .fasta.txt
e HDF5 (not recommended)

kmers.kff

File header
version encoding flags

[170] 0011110] (1] [0]
metadata® ¢ ¢ T
free data field |

Values definition
header 64 bits 64 bits

(vIs] [Se[ 1 J[%] o |

[k[10][m] 8 [[max] 5 ]

Index
header

[1]2]

relative
position

) -102
R 0
section
Sequences
header

[R]3]
data array

3 ACTAAACTGATG 32 47 8 | ¢

1 AAACTGATCG 1

2 GTAAACTGATT 1 |12
‘overlapping kmers

#kmers

kmers. txt

AAACTGATCG 1
ACTAAACTGA 32
CTAAACTGAT 47
GTAAACTGAT 1
TAAACTGATG 8
TAAACTGATT 12

[ Fixed-length field
[ variable-length field

DNA sequence, 2 bits per nucl.

Minimizer sequences

header
[M|AAAC TGAT] 3 |
#kmers minimizer
mp 3|3 ACTG 32147/ 8
1]0] ce |1
l2]2] e [1[i2

minimizer position




Other Applications of k-mers

e Metagenomics and error correction
e Transcriptomics (isoform quantification)



kK-mers in metagenomics

Metagenomic short read assembly: dominated by k-mers

e metaSPAdes, MEGAHIT, minia3

Taxonomic classification: same

e Kraken, Centrifuge o e S

ith same

imizer sorted by

lexicographical k-mer
order

Kraken




Sanger reads error correction

0.015
J
—

e EULER’s error correction module (Pevzner, 2001)

o Mutates reads so that all k-mers are solid 5 P —
Short reads: &
e Quake (Kelley, Schatz, Salzberg, 2010)
o  First use of k-mer histogram to determine error threshold A e

0.000

o Frames EULER’s method as a Maximum Likelihood
e BFC, Lighter, Musket, Bloocoo, (Bayes)HAMMER, ..
e Nowadays: none used anymore

T T T
0 20 40 60 80 100
Coverage

Long reads:
e LORDEC, LoRMA

o de Bruijn graph to correct long reads using short reads (or long reads)



k-mers in RNA-seq analysis

Alignment? k-mers.
Abundance estimation? k-mers

Differential analysis? gene A —
believe it or not, also k-mers ) -
(sometimes) isoforms e
g b
e e
Gene quantification: Bruijn
e Salmon (Patro et al, 2017) graph
e Kallisto (Bray et al, 2016) c
. . k-mers ...
RNAseq specific mapping: from 4
e STAR (Dobin et al, 2012) read d
RNAseq assembler:
e  Trinity (Grabherr et al, 2011) =0
Reference-free diff analysis: € iferred .F—nv=nv= = .
isoforms kallisto

e Transipedia.org (Bessiére et al,
2011)



Future Directions for k-mers

Integration with machine learning

Evolving role of k-mers in long-read technologies
Misc: sketching, database search, phylogeny
Omitted: pangenomics



k-mers in ML

Understanding Transformers via /V-gram Statistics

Timothy Nguyen
Google DeepMind
timothycnguyen@google.com

How does a transformer-based large language model (LLM) make use of its
context when predicting the next token?

Recall Shannon’s theory: probably of next gram following a N-gram



kK-mers in sketching

e D, (Torney et al, 1990)
o number of shared k-mers as a proxy of sequence similarity
e MinHash (Broder, 1997)
o Measuring similarity between two documents by random sampling of words
e Winnowing/minimizers (Roberts, 2004)
o Sampled k-mers
e Bloom filters (Bloom, 1970) applied to k-mers (2004)

o First applied to accelerate BLAST
o Later to k-mer counting, error correction, assembly, etc..

e Mash/sourmash/Dashing
o Modern k-mer sketching for sequence similarity estimation



kK-mers in sequence database search

e BLAST (1990)

o Clustered GenBank, assembled sequences, 200 GB

e BigSI/COBS (Bradley et al, 2019)
o Isolate genomes, 170 TB (.3% of SRA)

e MetaGraph (Karasikov et al, 2024 preprint)
o Animals, Plants, Bacteria, cancer data, 3.3 Pbp (8.9% of SRA)

e And many more



k-mers in phylogeny

e Construct phylogenetic trees without multiple sequence alignment

o “Is Multiple-Sequence Alignment Required for Accurate Inference of Phylogeny” (Hélh, Ragan, 2007)
o  “we encode K-mers as character states and estimate posterior probabilities of bipartitions using Mr-bayes’

B

Recent works close to pangenomics:

e SANS, SANS serif (Rempel, Wittler, 2021), KINN (Tang et al, 2023),

A £ B (o
>SAL_BA7171AA_AS_NODE_40 \ e Siise TR
= T 0610010010100000 | 0b10000000000000

GGCACCTGOAGAATAAGTIUCACTOCOGATE 0601110110111110 | [OH1T000000000000} e

0511000101111000 | {0511000000000000} =

0601001010000001 | 0501011101100000

0b01000011000110 p00111111111111

0b00010001101001 b00111111111111 L.
Gmm.!Tlcc“m"c:;i.f.*r::‘mm!,:ﬁéﬁgﬁc‘ml ”.ﬁ 0b00011101010101 | |0b00111111111111
TCTCCATCATTGCTCACATTGACCACGGTAAATCGA 0b00011111010111 | 0b01011101100000
CGCTGTCTGACCGTATTATCCAGATCTGCGGTGGCS 0610100011101001 | {0b11000000000000} -
bt 0b01100011111101 | 0b00001001111111 g
GAAGATACAGGACTACATAAAGCACCAGCTTGAAGA o : .
GGATAAAATGGGAGAGCAGTTATCGATCCCTTATCC split thanre | ot
GGGTAGCCCGTTTACGGGCCGTAAGTAGCGAAGTCT
GATGCAAATGTCAGATCGCGTGCGCCTGTTAGGGCG £00101101000000 [499, 491] 494.983

9, S9AS e ‘
CGGCTGGTAAGAGAGCCTTATAGGCGCATCAGAAAA (0b11000000000000 [362, 389] —— 375.257 J \ -
ACCTCCGGCTATGCCGGAGGATATTTATTACATTCT (500011010110000 [260, 230] 244.540 e W& \ A
G TA Ch N 0b00100111001000 (131, 168] 148.350 o/ \
N /
BT it s SR - T



What we will learn in the course

Mon: K-mer ops & histograms (Kamil), Fundamentals (Katie)
Tue: Deep dive: k-choice, errors (Katie), Proteins & OMArk (Yannis), FastK counting (Gene)

Wed: Graphs & Logan data (Rayan), Polyploidy & modeling (Kamil), Pangenomes & syncmers
(Katie)

Thu: Assembly QC with Merqury (Gene), Sketching: Sourmash & minimisers (Cassandra/Tessa)

Fri: Hackathon & wrap-up



Lex Nederbragt
@lexnederbragt

“Finding your way in life is like finding the
genome in a De Bruijn graph: it is very easy to
find *a* path, very hard to find *the* path”.



Thank you for your attention!

History and
overview of =
k-mers in



