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Abstract. Next-generation de novo short reads assemblers typically use
the following strategy: (1) assemble unpaired reads using heuristics lead-
ing to contigs; (2) order contigs from paired reads information to produce
sca�olds. We propose to unify these two steps by introducing localized
assembly: direct construction of sca�olds from reads. To this end, the
paired string graph structure is introduced, along with a formal frame-
work for building sca�olds as paths of reads. This framework leads to
the design of a novel greedy algorithm for memory-e�cient, parallel as-
sembly of paired reads. A prototype implementation of the algorithm has
been developed and applied to the assembly of simulated and experimen-
tal short reads. Our experiments show that our methods yields longer
sca�olds than recent assemblers, and is capable of assembling diploid
genomes signi�cantly better than other greedy methods.

1 Introduction

De novo assembly of short reads consists in reconstructing a genome
sequence given a set of short subsequences (reads) obtained from
DNA sequencing. In practice, the original sequence cannot be re-
trieved unambiguously because a genome contains repetitions longer
than the reads. Hence, one aims at �nding a reasonable approxima-
tion of the sequence as a set of longer gap-less subsequences (con-
tigs) or gapped subsequences (sca�olds). Over the last decade, three
di�erent genome assembly approaches have been adopted. Two of
them are graph-based. The string graph method is based on a graph
containing all the overlaps between reads [22]. The de Bruijn graph
approach is based on the graph of all the k-length substrings of reads
[24,21,13]. The third approach performs greedy extension of contigs
using an ad-hoc structures [3,23]. Even producing an approximation
of the genome is a computationally di�cult task. For assembly of



human-sized genomes using short reads (< 100 bp), current state of
the art implementations (using de Bruijn graphs) require hundreds
of gigabases of memory and several CPU weeks of computation [13].
For more details concerning assembly approaches, refer to a recent
survey [15].

Every next-generation sequencing technology is now able to mas-
sively produce paired reads separated by a known approximate dis-
tance (insert size). This information is highly valuable for re-sequencing
projects as it enables better mapping coverage, especially with long
inserts [6]. It also permits better resolution of repeats shorter than
the insert size for de novo assembly. To illustrate the di�erence be-
tween single-end and paired assembly, an analogy with jigsaws can be
made: consider n jigsaw pieces where each piece is linked to another
piece by a string of �nite length. The problem is to decide whether
these pieces exactly �t into a

√
n×
√

n box with the additional con-
straint that every string must be tightened. In other words, pairing
information indicates how far apart two pieces are in the solution. It
can be shown that the paired jigsaw problem is also NP-complete.
The reduction consists of splitting each classical jigsaw piece into 12
paired pieces.

Practically, pairs add more structure to the assembly problem,
by indicating the relative position of reads on the genome. While
most current assemblers use pairing information to improve assembly
quality, they rely on single-end assembly beforehand. For instance,
recent implementations of de Bruijn graph assembly methods use
paired reads to simplify the graph once it is fully constructed and
simpli�ed from single-end reads [9,24,13]. The process of improving
an existing assembly using paired reads is called sca�olding. The
sca�olding problem is NP-complete and several heuristics have been
proposed [18,11]. However, it may appear unsatisfactory to perform
paired assembly using graph simpli�cation or sca�olding, as such
approach requires to solve unpaired assembly beforehand, which es-
sentially ignores helpful pairing constraints.

Previous research has explored the bene�ts of using paired-end
reads during contigs construction. The Arachne assembler searches
for pairs of paired Sanger reads where both mates overlap to con-
struct contigs [2]. The Shorty assembler uses pairing information
to greedily construct contigs from paired reads anchored to long



reads [10]. PE-Assembler extends contigs greedily and attempts to
resolve ambiguous extensions using paired reads anchored nearby [1].
Medvedev et al. recently introduced the paired de Bruijn formalism,
which incorporates pairing information in the de Bruijn graph [14].
Donmez et al. also recently proposed an approach to transform a
string graph into a mate-pairs graph [7]. Each of these approaches
aim to resolve repeats when constructing contigs. Our approach is
essentially di�erent as it uses paired reads for direct sca�old con-
struction. One main advantage is that missing read overlaps (possi-
bly due to sequencing artefacts, such as coverage gaps or localized
errors) can be represented by gaps in sca�olds, whereas they would
necessarily interrupt contigs. Note that all methods, including ours,
do not implement mechanisms to resolve repetitions longer than the
insert size.

In the next section, assembly of paired reads is formalized us-
ing the paired string graph representation. It is shown that sca�olds
correspond to paths in the graph under ideal sequencing conditions.
The de�nition of these paths is then re�ned to account for sequencing
errors and biological variants. In section 3, a prototype implementa-
tion of path construction is applied to simulated and experimental
sequencing data. A comparison is made with two other popular as-
semblers, using relevant assembly quality metrics.

2 Paired string graph and non-branching paths

2.1 Paired assembly problem

The paired string graph is de�ned as an extension of the classical
string graph [16] over a set of paired reads R1 × R2. Two reads
(r, r′) ∈ R1∪R2 are said to k-overlap if a su�x of r matches a pre�x
of r′ exactly over k characters. The paired string graph PGk(R1 ×
R2) is de�ned as a directed graph by assigning a vertex to each
read in R1 ∪ R2. An edge r → r′ is created between two reads if
r k-overlaps r′ (overlap edge). A special type of edge r 99K r′ is
created if (r, r′) is a paired read (paired edge). Classical string graph
transformations are applied: reads that are substrings of other reads,
and transitively redundant overlap edges are discarded (paired edges
are ignored during this step). No transitive reduction is performed for



paired edges. For instance, consider the sequence S = abcdefcdgh
and perfect sequencing with insert of length 6 and paired reads of
length 2. The paired string graph of these reads is drawn in Figure
1.

A mixed path in the paired string graph is a succession of vertices
linked by either overlap edges or paired edges, e.g. r1 → r2 99K r3 →
r4. A path-string is a string corresponding to the concatenation of
nodes strings along a mixed path. The path-string is formed by the
following rules: after an overlap edge, the string is appended with
the concatenation of both nodes strings with their overlap repeated
only once; after a paired edge, the string is appended with a gap
corresponding to the paired insert size. In Figure 1, the path-string
of p = ab→ bc 99K fc is abc♦2fc, where ♦ is a single-character gap.

Fig. 1. Example of a paired string graph from paired reads (insert size of 6) covering
the sequence S = abcdefcdgh. Dashes edges represent paired links and regular edges
represent 1-overlaps between reads.

Similarly to the Assembly Problem (AP) [17], the Paired Assem-
bly Problem can be de�ned as a constrained �avor of AP. The Paired
Assembly Problem consists in �nding a path that visits each node at
least once (generalized Hamiltonian path) in PGk(R1×R2), and cor-
responds to a path-string s such that (1) the length of s is minimized
and (2) for every pair (r, r′) in R1×R2, the distance between r and r′

in s matches the paired insert size. Note that a solution is necessar-
ily a contig. Similarly to AP, this problem can also be shown to be
NP-hard. The following section focuses on constructing a collection
of sub-paths (possibly sca�olds) that approximate a solution.



2.2 Non-branching paths in the ideal case

Sca�olds can be directly constructed from the graph by following spe-
cial types of mixed paths. To illustrate this, we �rst assume unrealis-
tic sequencing conditions: error-free reads, perfect coverage and exact
insert size (these will be relaxed in the next section). A mixed path
in PGk(R1×R2) is a non-branching path (NBP) if each node, except
the �rst and the last, has in-degree of 1 in the graph with respect to
the corresponding in-edge type in the path, and out-degree of 1 cor-
responding to the out-edge type. In traditional assembly heuristics,
a contig can be represented as a NBP where each edge is an overlap
edge (simple path). For example, maximal-length contigs from the
graph in Figure 1 are

{ab→ bc→ cd, cd→ de→ ef → fc→ cd, cd→ dg → gh}.

In contrast, a non-trivial non-branching path is

{ab 99K ef 99K gh},

where the path-string (ab♦2ef♦2gh) is a sca�old which covers the
whole string. Under ideal sequencing conditions, non-branching paths
immediately correspond to valid sca�olds. One can also consider in-
(resp. out-) branching paths, for which only out- (resp. in-) degree
of nodes in the path with respect to the corresponding edge type is
1. By similar reasoning, it can be shown that such paths also spell
valid sca�olds.

2.3 Practical non-branching paths

In actual sequencing, we distinguish two situations: undetected paired
branching and additional overlap branching. Previously, paired branch-
ing was always detected because of perfect coverage and exact insert
size. Now, it is no longer su�cient for a node to have an unique paired
edge in order to unambiguously extend a sca�old. Weaker conditions
can be formulated to detect the absence of paired branching, given
imperfect coverage and variable insert size. First, assume that the
insert size deviation is bounded by a constant i. Second, consider a
simple path p of length 2i + 1, and let n be the central node (pi+1).



Property 1. A paired edge n 99K n′ is considered to satisfy the non-
branching condition if the sub-graph induced by the opposite mates
of nodes in p is a simple path p′ of central node n′ = p′

b |p
′|
2
c
.

In other words, it is possible to detect that p′ is the only genomic
region which appears at approximately an insert distance further
than p. The original de�nition of non-branching paths can then be
extended to include this condition in place of the paired degree con-
dition.

Furthermore, sequencing errors and biological variants introduce
additional branching in the graph. The branching structures are re-
ferred as bubbles (multiple paths that starts and ends at the same
nodes) and tips (short interrupted paths) [24]. Graph-based assembly
algorithms typically remove bubbles and tips after the whole graph
is constructed. Here, the bubble detection technique presented in [24]
is adapted to also detect tips. As these structures are short, one can
set a maximal length d > 0 for paths within them. A general char-
acterization of these structure can be made in terms of sub-graph
traversal. Observe that both structures form sub-graphs which start
at a single node, and paths which are not interrupted converge after
a certain length.

Property 2. Given a variant sub-graph, the breadth-�rst tree con-
structed from the start node has a single node of depth d.

Non-branching paths are extended to permit traversal in short branch-
ing sub-graphs through overlap edges. Figure 2 illustrates both prop-
erties. In summary, we de�ne practical non-branching paths (PNBP)
as follows:

� for path nodes n 99K m linked by a paired edge, both n and m are
middle nodes of simple paths of length 2i + 1 for which Property
1 is veri�ed.

� for path nodes n → m linked by an overlap edge, either the
overlap out-degree of n and the overlap in-degree of m are both
1, or n→ m is part of a sub-graph which satis�es Property 2.

Note that setting i = 0 and d = 1 corresponds to the original def-
inition of non-branching paths. Practical in-branching (resp. out-
branching) paths are de�ned similarly, except that Property 1 only
needs to be veri�ed for n (resp. m).



Fig. 2. Practical non-branching path traversal (blue line) of a paired string sub-graph.
Thick lines represent paths of overlap edges. Dashed lines represent paired edges be-
tween reads. Property 1 is used to traverse a gap, as paired reads link together two
simple paths. Property 2 is used to traversal small branching regions (a tip and a
bubble).

2.4 Localized, parallel assembly

For large genomes, constructing the classical string graph is a memory-
intensive operation. This issue also applies to paired string graphs,
as they contain strictly more information. Two possible solutions are
considered to reduce memory usage. A compressed FM-index [8] of
the reads reduces the memory usage of the string graph [20]. This
approach could be extended to include paired edges, computed dy-
namically from indexed paired reads to avoid memory overhead.

Another solution is to perform localized assembly, without initial
construction of the whole paired string graph. The key property of
practical non-branching paths is that only a small sub-graph needs to
be explored for each path. We propose to take advantage of this prop-
erty to perform assembly both locally and in parallel. Concretely, a
greedy assembly algorithm can start from any read and construct
a sub-graph of the paired string graph on the �y, by following a
PNBP strategy. This is equivalent to splitting the complete paired
string graph into disjoint sub-graphs, each sub-graph corresponds to
exactly one sca�old. This approach induces a memory overhead due
to the parallel construction of sub-graphs, however only a constant
number of sca�olds is assembled in parallel at any given time. To
construct each sub-graph, overlaps between paired reads and pair-
ing information need to be accessed e�ciently. Hence, it is required
that a complete index of the reads resides in memory. However, such
index occupies less memory than a string graph. Provided that each



worker can access the full index, embarrassingly parallel construction
of sca�olds can be achieved.

While it is technically a greedy algorithm, such approach over-
comes the shortcomings of classical greedy algorithms. Except for
Taipan [19], which does not support paired reads nor parallel assem-
bly, most greedy assemblers do not construct a graph to solve local
extension ambiguities [4,1,3]. As a consequence, greedy assemblers
stop contigs extension at small biological variations or sequencing ar-
tifacts. Localized graph-based assembly using Property 2 overcomes
this problem by explicitly performing traversal of such structures.

3 Results

We developed a prototype assembler called Monument based on local
construction of practical in-branching paths. The prototype is im-
plemented in the Python language with C++ extensions for critical
parts. For memory e�ciency, a kmer-based reads indexing structure
is used. Speci�cally, the indexing procedure minimizes the number
of reads referenced by each kmer, while still maintaining branching
information. For practical in-branching paths, the maximal graph
depth d for genomic variants is set such that any path has genomic
length less than 10 + k. The insert size deviation i is set to half
the value of the insert size, which is a very conservative deviation
with respect to actual paired-end data. To ensure fair comparison
with other methods, we implemented a naive gap-closing procedure
which �ll sca�olds gaps with any overlap path satisfying insert size
constraints.

Two short reads assemblers based on de Bruijn graphs are com-
pared with this prototype. The Velvet assembler (version 1.1.03)
uses graph simpli�cation heuristics [24]. The Ray assembler (version
1.3.0) implements a greedy traversal strategy [3]. The assemblers
were run with default parameters and k = 23. By setting a similar
kmer size, all assemblers, including ours, virtually explore the same
de Bruijn graph.

We �rst compared assemblers on experimental Illumina short
paired reads from E. coli (SRA SRX000429). This dataset (Dataset
1) contains 10 million paired reads of length 36 bp and insert size
200 bp. We then investigated the ability of our method to assemble



diploid genomes. To this end, we simulated 3 million paired reads
of a diploid genome based on the E. coli sequence (Dataset 2). The
wgsim paired reads simulator was used with default parameters [12],
producing 75 bp reads (500 bp inserts) with simulated sequencing
errors. Assembly results for the datasets are shown in Table 1. To
understand why Ray has di�culties assembling the second dataset,
we simulated a third dataset of reads, similar to Dataset 2 but with-
out variants. This time, Ray obtains a sca�old N50 of 89.4 Kbp and
largest sca�old of length 268.5 Kbp. This experiment con�rms that
mechanisms for biological variations traversal, such as PNBPs, are
a key requirement for greedy assemblers.

Dataset Software Contig N50
(Kbp)

Sca�old
N50
(Kbp)

Longest
sca�old
(Kbp)

Coverage
(%)

Accuracy
(%)

Experimental
(1)

Monument 38.0 101.8 236.0 96.4 96.7

Velvet 26.3 95.3 267.9 96.9 99.1

Ray 69.5 87.3 174.4 97.4 98.4

Simulated
with variants

(2)

Monument 113.3 134.1 340.5 91.0 95.0

Velvet 30.8 132.6 327.2 87.9 92.3

Ray 10.2 10.2 41.2 89.2 100.0

Table 1.Quality of the assemblies of simulated and experimental paired-end reads from
E.coli using Velvet, Ray and our prototype (Monument). The N50 metric measures the
length of the smallest element of the set of largest sca�olds (resp. contigs) which cover
at least 50% of the assembly. Coverage and accuracy of sca�olds are assessed using
evaluation tools from Allpaths [5]. Speci�cally, sca�olds are divided into chunks of size
less than 10kb. Considering the high coverage of the datasets, each chunk is considered
to be valid if it aligns with more than 99% identity to the reference genome (alignment
with undertermined nucleotides are considered valid).

We recorded execution time and memory usage during the as-
sembly of the experimental dataset. The size of the paired reads
index is 0.4 GB and peak memory usage during assembly is 0.6 GB.
Velvet and Ray have peak memory usage of 2.4 GB and 3.2 GB re-
spectively. However, Ray can distribute its indexing structure on a
cluster. Using 6 threads, our implementation completed the assembly
in 7 minutes, Velvet in 8 minutes and Ray in 16 minutes.



Our implementation can also assemble a sca�old around a speci-
�ed genomic region, i.e. perform targeted assembly. This is of partic-
ular interest as new targeted assembly methods (TASR and Mapsem-
bler, both unpublished) only produce contigs. Targeted assembly
with our prototype is also very fast: one sca�old is assembled in a
few seconds. However, contrary to targeted assemblers, the prototype
requires the complete reads index to reside in memory.

4 Discussion

In summary, a new de novo assembly framework is formulated by
introducing paired string graphs. The novelty of this framework re-
sides in its ability to perform localized assembly of sca�olds. Prior
to this work, sca�olds were constructed from an ordering of contigs,
requiring a complete assembly of contigs to be known beforehand.
We show that it is possible to assemble sca�olds locally around a
genomic region by following non-branching paths greedily. This ap-
proach allows to design the �rst localized assembly algorithm which
directly constructs sca�olds from reads.

Compared to other greedy approaches, our approach takes into
account biological variants. Hence, it does not su�er from degraded
contiguity with diploid genomes. Preliminary benchmark results on
simulated and experimental datasets indicate that this method yields
longer sca�olds than two leading short reads assemblers. We conjec-
ture that sca�olders implemented in popular assemblers do not take
full advantage of the whole contigs graph, as our greedy traversal
obtains comparable results. Additionnally, practical bene�ts of this
algorithm are twofold. It is embarrassingly parallelizable, as scaf-
folds can be constructed independently. It also does not require a
large graph to be stored in memory, a small graph is constructed for
each sca�old.

A natural future direction for this work is to compare the pro-
totype with more existing tools, especially string graphs implemen-
tations, on larger datasets. Two other aspects should also be con-
sidered: (1) gap-closing in sca�olds is a key step for obtaining long
contigs. Most complex repeats were not resolved by our simple path-
�nding procedure, hence a more elaborate algorithm is needed. (2)
Incorporating mate-pairs with long inserts in genomic graphs is still



an unaddressed challenge in the literature. These reads are produced
with higher insert size variability and lower coverage than paired-end
reads. Mate-pairs cannot be used in our current framework, because
Property 1 almost never holds for such data. An immediate solu-
tion would be to perform re-sca�olding of sca�olds using mate-pairs
links.

As short read sequencing is progressively shifting towards longer
reads (over 100 bp), the landscape of assembly software has to adapt
to high-coverage, longer reads. Speci�cally, de Bruijn graph imple-
mentations appear to be unable to assemble long reads with qual-
ity comparable to string graph implementations. In contrast, string
graph-based methods are limited to assembly of low-volume datasets
because of memory constraints. We believe that our methodology
will lead to software able to assemble both short and long reads at
any coverage without sacri�cing running time or results quality.
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