
Nature Computational Science | Volume 4 | February 2024 | 104–109 104

nature computational science

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

Indexing and real-time user-friendly queries
in terabyte-sized complex genomic datasets
with kmindex and ORA

Téo Lemane    1,2  , Nolan Lezzoche3, Julien Lecubin4, Eric Pelletier    2,5,
Magali Lescot3,5, Rayan Chikhi6 & Pierre Peterlongo    1 

Public sequencing databases contain vast amounts of biological
information, yet they are largely underutilized as it is challenging to
efficiently search them for any sequence(s) of interest. We present kmindex,
an approach that can index thousands of metagenomes and perform
sequence searches in a fraction of a second. The index construction is an
order of magnitude faster than previous methods, while search times are
two orders of magnitude faster. With negligible false positive rates below
0.01%, kmindex outperforms the precision of existing approaches by four
orders of magnitude. Here we demonstrate the scalability of kmindex by
successfully indexing 1,393 marine seawater metagenome samples from
the Tara Oceans project. Additionally, we introduce the publicly accessible
web server Ocean Read Atlas, which enables real-time queries on the Tara
Oceans dataset.

Public genomic datasets are growing at an exponential rate. They con-
tain treasures of genomic information that enable groundbreaking
discoveries in fundamental domains such as agronomy, ecology and
health1,2. Unfortunately, despite their public availability in repositories
such as the Sequence Read Archive3, these resources, measured in peta-
bytes, are rarely ever reused globally because they cannot be searched
efficiently. Many methodological developments toward sequencing
data search engines have been introduced in recent years4,5. Current
methods for searching genomic sequencing data look for k-mers (words
of fixed length k, with k usually in [20; 50]) shared between a query
sequence and each sample present in a reference database. The cen-
tral operation is thus to determine, for each k-mer, in which indexed
sample(s) it occurs.

In this Brief Communication, we focus on the challenge of indexing
and querying large and complex metagenomic datasets. By ‘complex’
we arbitrarily design any dataset totaling over a hundred billion distinct
k-mers. This is frequently observed in environmental metagenomic

projects. Given the data size, that is, thousands of samples totaling tens
of terabytes of compressed data, and its complexity, that is, thousands
of billions of distinct k-mers, the computational challenge is immense.
Once k-mers are extracted from raw data and filtered, a data structure
is built to associate each k-mer to the sample(s) in which it occurs.

Techniques for associating k-mers to samples can be divided into
three categories: sketching approaches that heavily subsample k-mers,
exact data structures storing all k-mers and approximate membership
data structures such as Bloom filters (BFs). Sketching approaches
such as sourmash6 or Needle7 typically suffer from high false negative
rates when short sequences are queried and are thus out of the scope
of this work. Methods based on exact representations (for example,
MetaGraph8, BiFrost9 and ggcat10) suffer from low scalability, as high-
lighted by our results. We are thus left with methods based on BFs11,
such as COBS12 and SBT13, later improved by HowDeSBT14 and more
recently by MetaProFi15, which is able to index billions of k-mers using
only a few dozen of gigabytes of space.

Received: 12 July 2023

Accepted: 16 January 2024

Published online: 26 February 2024

 Check for updates

1Univ. Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, France. 2Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS,
Univ. Evry, Université Paris-Saclay, Evry, France. 3Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography
(MIO), UM 110, Marseille, France. 4SIP, OSU PYTHEAS, Marseille, France. 5Research Federation for the Study of Global Ocean Systems Ecology and
Evolution, FR2022/Tara Oceans GO-SEE, CNRS, Paris, France. 6Institut Pasteur, Université Paris Cité, G5 Sequence Bioinformatics, Paris, France.

 e-mail: teo.lemane@genoscope.cns.fr; pierre.peterlongo@inria.fr

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00596-6
http://orcid.org/0000-0002-7210-3178
http://orcid.org/0000-0003-4228-1712
http://orcid.org/0000-0003-0776-6407
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00596-6&domain=pdf
mailto:teo.lemane@genoscope.cns.fr
mailto:pierre.peterlongo@inria.fr

Nature Computational Science | Volume 4 | February 2024 | 104–109 105

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

deployment of real-time query servers as presented in the next section.
Of note, kmindex also offers a ‘fast mode’, presented in Supplementary
Section 1.5, that uses more RAM to achieve even faster queries.

kmindex allows highly accurate queries
The kmindex, MetaProFi and COBS scalability is achieved thanks to
the usage of BFs that generate FP calls at query time. FP rate analyses,
summarized in Table 1, show that, for a similar index size, MetaProFi
and COBS present sensible FP hits, on average 11.18% and 13.29%, respec-
tively, over the 50 answers (one per indexed sample). In contrast, the
kmindex FP rate is negligible (below 10−2% on average).

kmindex provides a high level of usability
kmindex enables to add new samples to an index. A novel and independ-
ent index can be registered with a previous one. At query time, each
registered index is queried independently. This offers the possibility to
query only a subset of the registered indexes. This is well adapted when
indexing samples with distinct characteristics. Alternatively, users can
extend an existing index, and the parameters of the previous index
(such as the ad-hoc hash function or the BF sizes) are automatically
reused. This second choice is less flexible but provides better perfor-
mances at query time (see results presented in Supplementary Section
1.5). Also, kmindex enables the filtration of erroneous k-mers, not only
relying on their abundance in a dataset but also on their co-abundances
in all indexed datasets. This enables to ‘rescue’ low-abundance k-mers
that would have otherwise been removed. To the best of our knowl-
edge, no other indexing tool can integrate this feature. This feature is
inherited from the kmtricks21 algorithm.

kmindex query results can be provided with various degrees of pre-
cision. For each indexed sample, users can access the average similarity
of queried sequences or a similarity value per queried sequence. kmin-
dex can provide the distribution of hits, enabling to highlight some
regions of interest among the queried sequences. Finally, kmindex is
well documented and simple to install. Queries can be performed via
a command line Interface, via an application programming interface
or a hypertext transfer protocol (HTTP) server.

Indexing 1,393 Tara Oceans samples in the ORA web server
With kmindex, we built and made available a public web interface able
to perform queries on a dataset composed of 1,393 samples (distinct
locations and distinct fraction sizes) of the Tara Oceans project17 rep-
resenting 36.7 TB of raw fastq.gz files. A user can query sequences,
determining their similarity with the 1,393 indexed samples. A world
map depicts the resulting biogeography, as well as the environmental
parameters associated with the sequences.

Note that, for reasons of robustness and continuity of service, the
index is deployed on a networked and redundant filesystem with lower
performances compared to the benchmark environment, although
suitable for this type of service. Details about indexed read sets, and
more information about the server architecture and setup, are provided
in ‘The ORA server’ section in Methods.

When indexing large and complex metagenomic datasets, existing
tools face important limitations in either disk usage, memory usage,
computation time (either during indexing and/or query), false posi-
tive (FP) rate or false negative rate. Overcoming all these limitations
simultaneously makes the design of an efficient data indexing strategy
particularly challenging. We present kmindex, a tool that performs
indexing and queries using orders of magnitude fewer resources than
previous approaches. Also, kmindex provides results with no false
negative calls and with negligible FP rates, approximately four orders
of magnitude smaller than those obtained by other tools. kmindex is
primarily designed for indexing complex sequencing samples. Owing
to engineering choices, it is currently not suited for indexing large
collections of genomes (that is, hundreds of thousands of samples).

To showcase the features of kmindex on a dataset of high biological
interest, we introduce a web server named ‘Ocean Read Atlas’ (ORA)
available at ref. 16. ORA allows to search one or several sequences across
all of Tara Oceans metagenomic raw sequencing data17. It enables the
visualization of the results on a geographic map and their correlation
with each of the 56 environmental variables collected during the cir-
cumnavigation campaign. The ORA server enables to perform instant
searches on a large and complex dataset, providing new perspectives
on the deep exploitation of Tara Oceans resources.

We evaluated the performances of kmindex together with eight
state-of-the-art k-mer indexers: themisto18, ggcat10, HIBF19, PAC20,
MetaProFi15, MetaGraph8, Bifrost9 and COBS12. The dataset for this
benchmark is composed of metagenomic seawater sequencing data
from 50 Tara Oceans samples, of 1.4 TB of gzipped fastq files. It contains
approximately 1,420 billion k-mers. Among them, approximately
394 billion are distinct, and 132 billion occur twice or more.

The benchmarking setup is described in ‘Benchmark setup’ section
in Methods. The results of all the following claims are described in
Supplementary Section 1.

kmindex has better index construction performance
Among the nine tested tools, only MetaProFi, COBS and kmindex
completed the index creation phase and were able to perform queries
correctly. As shown in Table 1, building an index with kmindex is an
order of magnitude faster than MetaProFi and COBS, and uses 2.6× less
memory and 6.5× less disk. The final index sizes are all within the same
magnitude range, with the smallest one produced by kmindex. The
kmindex construction took less than 3 h, a peak random-access memory
(RAM) of 107 GB and a peak disk usage of 878 GB.

kmindex enables real-time queries
As shown in Table 1, at query time, kmindex outperforms MetaProFi
and COBS in terms of both computation time and memory resources
(Supplementary Section 1.2). kmindex is between 20 and 200 times
faster than MetaProFi and COBS for querying one read or millions of
reads. kmindex is capable of performing millions of queries in a matter
of minutes while allowing real-time resolution for small queries. This
opens the doors to analyzing complete read sets as queries, and the

Table 1 | Overview of index construction and read query performance of kmindex compared to MetaProFi and COBS, on 50
Tara Ocean samples

Build index Query time FP rate (%)

RAM Disk Index size Number of queried reads

Time GB GB GB 1 10 million Average Maximum

MetaProFi 30 h 15 min 278 5,684 226 12.72 s 1 h 29 min 11.18 21.55

COBS 26 h 30 min 278 5,684 184 1.51 s 15 h 56 min 13.29 24.60

kmindex 2 h 56 min 107 878 164 0.06 s 4 min 21 s 0.006 0.18

These are the only tools that succeeded in building an index and perform queries. The ‘RAM’ and ‘Disk’ columns provide the peak usage during the building process. The COBS and MetaProFi
RAM and disk peaks are identical as they correspond to the same k-mer counting and filtration step. Queries are composed of one read and 10 million reads uniformly sampled from the 50 Tara
Oceans datasets. All executions were performed on a cold cache. Extended results are presented in Supplementary Section 1. Bold texts highlight the best values.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 104–109 106

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

The resulting web server named ORA, whose representation is
provided in Supplementary Fig. 2, extends the ‘Ocean Gene Atlas’
server22,23 that supports queries to assembled genes from Tara Oceans17
and Malaspina24. We believe this server will be of great importance to
the Tara Oceans consortium as a whole, and more broadly to anybody
interested in marine genetic data.

In conclusion, we present kmindex, which could open up a new chan-
nel for leveraging genetic data, removing the obstacles that often isolate
studies from each other. Currently, kmindex only indexes the presence
of a k-mer in a given sample. Hence, there is room for improvement by
allowing the indexing of the abundance of each k-mer in each sample.
The ability to perform fast queries is achieved by not compressing the
data structure. As a result, the indexes are approximately 10% the size of
the compressed input data, which can be a major limitation to scale-up
to petabyte-size datasets. An area for future research will involve devel-
oping compression schemes specifically tailored to this framework.

Methods
Conceptually, the presence of each indexed k-mer is stored in one BF
per input read set. The BF construction relies on kmtricks21, which
allows to filter erroneous k-mers and to efficiently build a partitioned
matrix of BFs. Each partition indexes a subset of k-mers corresponding
to a specific set of minimizers. In practice, with kmindex, matrices are
inverted to limit cache misses during the query process, that is, each
row is a bit vector representing the presence/absence of a k-mer in each
indexed sample. At query time, k-mers from queried sequences are
grouped into batches, and, avoiding cache misses, BFs are queried to
determine the presence or absence of each k-mer in each input dataset.

Index construction
The construction of BFs from raw sequencing data is delegated to
kmtricks21, which allows partitioned construction of one-hash BF matri-
ces. For each input dataset, k-mers are counted and filtered on the
basis of their abundance. Additionally, and contrary to other methods,
during one of the index-building steps, for a given k-mer, its abundance
in all datasets is known. This offers the possibility to conserve a k-mer
having an abundance lower than the fixed threshold, which would be
filtered out by other methods, but having some occurrences in the
other datasets. This may reflect the presence in one of the samples of
a low-abundant species for which we want to preserve the data. Once
k-mers are filtered, submatrices are built. Each submatrix indexes a
subset of k-mers matching a specific set of minimizers.

As represented in Fig. 1 (right), the resulting index built by kmindex
consists of P distinct matrices (with P being the number of partitions,
equal to 3 in the figure). To save indexing and query time, the index is
‘inverted’: given a k-mer, the N bits indicating its presence/absence in
the N indexed datasets are consecutive in the index. This allows for fast
queries across numerous datasets. Hence, in practice, in a matrix, each
row is a bit vector representing the presence or absence of a hash value
in each indexed sample. Note that the rows are not packed to save
construction and query time. This results in the fact that each row is
composed of ⌈ N

8
⌉ × 8 bits. Doing so, min(0,8 − Nmod8) bits are unused

for each row, as represented by a double arrow in Fig. 1. This is up to 7
bits per row. These few lost bits may appear as a drawback, but this is
negligible regarding the N value that is meant to be in the order of a few
hundred or thousands, and, importantly, this enables us to efficiently
append novel indexed samples to an existing index.

By default, the resulting index is not compressed. Although requir-
ing more space, this ensures optimal access time (both for writing
and reading), and it offers the possibility to dynamically append new
datasets to an existing index.

Index query
The query process introduced in kmindex is also sketched in Fig. 1.
Batch processing is used for queries. This allows maximum throughput

while maintaining control over memory usage. The user can specify the
batch size and the maximum number of parallel batches according to
the system’s capabilities.

The resolution of a batch proceeds as follows:

	 1.	 Bucketing. The index is organized by partition, each corres
ponding to a set of minimizers. The first step consists of split-
ting query sequences into k-mers, which are then hashed and
inserted into the right partition according to their minimizers.
Each k-mer partition of the batch can then be solved by query-
ing the corresponding index partition.

	 2.	 Sorting. Each partition is sorted to enable its resolution in a
single sequential pass on the corresponding index partition,
reducing cache misses.

	 3.	 k-Mer level resolution. Querying a specific k-mer consists of
fetching the row that corresponds to its hash value in the index
to retrieve the bit vector corresponding to its presence or ab-
sence in each sample. For each query, the response vectors are
aggregated by summation, resulting in an integer vector that
represents the number of positive hits in each indexed sample.
Obtaining the response vector for each k-mer is the current
bottleneck because of input/output (I/O) operations. For this
reason, instead of loading the index into memory, index
partitions are read through memory-mapped files. This allows
reading only the parts of the index that are relevant to the
batch resolution, which is particularly beneficial in the case of
small queries.
The memory-mapped files can be managed in two different
ways. Normal mode: each batch manages its own mappings
of index partitions. The mapping of a partition is closed as
soon as all k-mers belonging to the partition are resolved.
The cached pages are then marked as available for eviction,
resulting in lower memory usage (see results presented in Sup-
plementary Section 1.4). Fast mode: all batches share the same
mappings. This way, a larger number of pages are kept in the
cache when conditions are favorable, that is, without memory
pressure, avoiding possible new I/O operations when solving
the remaining batches. The memory usage may therefore
seem high due to important page caching, up to the size of the
index in the context of large query sets. Note that both modes
require the same minimum amount of memory; the other part
of the memory usage corresponds only to page caching, which
is automatically managed by the kernel. In other words, under
memory pressure, both modes show the same memory usage.

	 4.	 Sequence-level resolution. Finally, a result file is generated
in either ‘json’ or ‘tsv’ format depending on the user’s choice.
Query results are filtered on the basis of the threshold specified
by the user. The user can also request the distribution of hits
along the query sequences, represented as a binary vector.

Reducing the FP rate
The kmindex algorithm embeds the findere approach25. findere enables
a drastic reduction of the FP rate when querying successive k-mers
from a query while using an approximate membership query (AMQ)
data structure (such as BFs) for indexing. For each indexed dataset, the
central idea consists in indexing its s-mers instead of its k-mers in the
AMQ, with s ≤ k. At query time, a k-mer is considered as existing in the
dataset if all its k − s + 1 constituent s-mers are reported as present by
the AMQ. In the general case, using this approach, a k-mer is wrongly
reported as present (a FP) when all its s-mers are themselves FPs. This
has the effect of exponentially decreasing the FP rate with respect to the
k − s value. When querying k-mers from a sequence of length n, in the
general case, n − k + 1 calls to the AMQ have to be made. Using findere,
n − s + 1 calls must be made (k − s more than without using findere).
This has negligible and no measurable impact on query time.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 104–109 107

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

Benchmark setup
In situations involving large indexes and queries, various factors such
as I/O operations or caching can impact performance. To account for
these effects, we performed the benchmarks from a user’s perspective.
As a result, all measurements are obtained using the command line
tools with particular attention to caching effects. The reported values
include input parsing, query execution and output writing. The results,
presented in Supplementary Section 1.4, demonstrate the performance
in a cold (the most likely and also the least favorable) or warm cache
context. We recall that the dataset for this benchmark is composed of
metagenomic seawater sequencing data from 50 Tara Oceans samples,
of 1.4 TB of gzipped fastq files. It contains approximately 1,420 billion
k-mers. Among them, approximately 394 billion are distinct, and 132
billion occur twice or more. These data are publicly available.

Executions were performed on the GenOuest platform on a node
with 64 cores (128 threads) Xeon 2.2 GHz (L1, 48 KB; L2, 1.25 MB; L3,
48 MB shared) with 900 GB of memory. All computations are per-
formed on an xfs filesystem allowing 1,052 MB s−1 sequential reads,
473 MB s−1 sequential writes and 908 MB s−1 random reads (throughput
measurements are obtained using fio26). All tested tools were param-
eterized to use 32 threads.

See ‘Code availability’ section for information about used commands,
data accession identifiers, input random sequence and output files.

The ORA server
Dataset. The ORA27 index is composed of 1,393 samples (distinct loca-
tions and distinct fraction sizes) of the Tara Oceans project. These sam-
ples are divided into six distinct groups, determined by the size fraction
of the sequenced species. These fractions correspond to the physical
filter sizes used during the sampling campaign. Based on this clustering
we built six distinct indexes (all with the same parameters). At query
time, as all the six indexes are registered in a unique meta-index, the
whole set of samples is queried. A description of the dataset is available
in Extended Data Table 1. The size of the final uncompressed index is
approximately 13% of the size of the raw fastq.gz files, which is 36.7 TB.

Sequencing data availability. Shotgun metagenomic sequences of all
the samples from the Tara Oceans Expedition (2009–2013) are avail-
able at the European Nucleotide Archive28 under global accession

number PRJEB402 (PRJEB1787 and PRJEB9740 for bacteria and archaea,
PRJEB1788 for giant viruses, PRJEB4352 and PRJEB9691 for protists, and
PRJEB4419 and PRJEB9742 for DNA viruses).

Environmental data. The environmental data are from the Tara Oceans
Expedition (2009–2013) and are available on PANGAEA29. The environ-
mental database contains currently:

•	 BIODIV30

•	 CARB31

•	 HPLC32

•	 MESOSCALE33

•	 NUT34

•	 SENSORS35

•	 SEQUENCING36

•	 WATERCOLUMN37

ORA server workflow. Supplementary Fig. 1 shows an overview of
the ORA server.

The ORA service is composed of three parts:

	 1.	 The environmental database containing the parameters meas-
ured and estimated during the sampling of the Tara Oceans
Expedition;

	 2.	 The kmindex server to query the kmindex index made with
sequencing reads from Tara Oceans Expedition via HTTP
requests;

	 3.	 The ORA server to query the index and make the link between
k-mers (contained in the query sequence) and the environ-
mental parameters of samples sharing these k-mers. ORA
provides results on a webpage including maps, plots and
table files.

A representation of these components is available in Supplementary
Fig. 2.

kmindex server. The index is stored on a Ceph storage cluster (SSD
pool). The CRUSH algorithm enables the Ceph storage cluster to scale,
rebalance and recover data dynamically. Nodes of this storage cluster
are on a redundant network using Link Aggregation Control Protocol
trunking configuration.

Query time Stored index

Hash1

Hash3

Hash2

Hash5

Hash4

Hash6

Hash8

Hash7

Hash9 1

1 0

0 0

0 0

0

00

0 0

0

0 0

0

0

0

00

00

0000

0

0

0 0

0

0

0

0

0

0

00

0 0

0

1

1

1

1

1

1

11

1

11

1

1

1

1

1 1

1 1

Min(0, 8–N%8)

Partition 3
Partition 2

Partition 1

1

0

0

S2 S3 S4 S5 S6S1 SN = 7

Hashes of k-mers

S1: 0

S1: 3
S2: 6

S7: 7

S1: 1

S1: 2

S2: 6

S2: 0

S2: 0

S7: 4

S7: 1

S7: 2

Batch 1 Batch 2

Queries

>q1

>qn

Σ

…

…

…

…

…

Fig. 1 | kmindex: an overview of the data structure and the query process.
Right: data structure showing the stored index on disk. Vertical black rectangles
represent the N BFs (one per input sample). The orange horizontal rectangles
represent the actual data structure saved on disk, storing consecutively the
0/1 values of distinct BFs for the same hash value. The three colored horizontal
rectangles represent three partitions, each saved in a distinct file. Left: query
example. Hashes of k-mers are symbolized by small horizontal lines, divided
into two batches and grouped by partitions. Each group is sorted. Each cylinder

represents the streaming of a set of hashed k-mers, querying lines of BFs mapped
into memory. For simplicity, the image shows only queries from hashed k-mers
from one of the two represented batches. In practice, for each partition, all
batches are queried. For each sample, the results from each partition and each
batch are finally summed up (as symbolized by the ‘Σ’ symbol in this figure). Also
for simplicity, this figure does not represent the use case in which the distribution
of hits along the query sequences is reported as a binary vector.

http://www.nature.com/natcomputsci

Nature Computational Science | Volume 4 | February 2024 | 104–109 108

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

The kmindex HTTP server runs in a Qemu/KVM virtual machine
(VM) with 16 cores and 32 GB RAM, supporting 16 concurrent queries.
VM is stored on a Proxmox virtualization cluster with HA capabilities.
Depending on our available resources, storage and VM, capacities may
be expanded if needed. This infrastructure is mandatory to ensure
service continuity.

Supplementary Fig. 2 represents the overall ORA workflow.

About ORA usages and limitations. The service currently supports
unique query of a FASTA file limited to 10 kilobase pairs via the web
interface. Each user is limited to 200 jobs per 24 h. The results can either
be delivered directly or sent by email with a link valid for 2 weeks. In the
future and depending on our computational capacity, we expect to
offer an application programming interface with more features such
as the integration of the query abundance and metadata associated
with target sequences.

A user guide manual is available at ref. 38, where the ‘Interfaces’
section39 provides a detailed explanation about the submission and
results interfaces. Users can contact us by sending an email to ocean-
readatlas@mio.osupytheas.fr.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A list of publicly available data used in this work is presented in
the https://github.com/pierrepeterlongo/kmindex_benchmarks
repository40.

Code availability
kmindex is an open-source software available at https://github.com/
tlemane/kmindex (ref. 41). The documentation is available at https://
tlemane.github.io/kmindex/. The exhaustive list of tool versions and
commands used are presented in a companion website40, which also
reports the FP computation protocols and a detailed description of
the dataset considered for this benchmark. The ORA server code is
available through a GitLab repository27.

References
1.	 Edgar, R. C. et al. Petabase-scale sequence alignment catalyses

viral discovery. Nature 602, 142–147 (2022).
2.	 Paoli, L. et al. Biosynthetic potential of the global ocean

microbiome. Nature 607, 111–118 (2022).
3.	 Katz, K. et al. The Sequence Read Archive: a decade more of

explosive growth. Nucleic Acids Res. 50, D387–D390 (2022).
4.	 Chikhi, R., Holub, J. & Medvedev, P. Data structures to represent

a set of k-long DNA sequences. ACM Comput. Surv. 54,
1–22 (2021).

5.	 Marchet, C. et al. Data structures based on k-mers for querying
large collections of sequencing data sets. Genome Res. 31,
1–12 (2021).

6.	 Pierce, N. T., Irber, L., Reiter, T., Brooks, P. & Brown, C. T. Large-scale
sequence comparisons with sourmash. F1000Research 8,
1006 (2019).

7.	 Darvish, M., Seiler, E., Mehringer, S., Rahn, René & Reinert, K.
Needle: a fast and space-efficient prefilter for estimating
the quantification of very large collections of expression
experiments. Bioinformatics 38, 4100–4108 (2022).

8.	 Karasikov, M. et al. Metagraph: indexing and analysing nucleotide
archives at petabase-scale. Preprint at bioRxiv https://doi.org/
10.1101/2020.10.01.322164 (2020).

9.	 Holley, G. & Melsted, P. áll Bifrost: highly parallel construction and
indexing of colored and compacted de Bruijn graphs. Genome
Biol. 21, 249 (2020).

10.	 Cracco, A. & Tomescu, A. I. Extremely fast construction and
querying of compacted and colored de Bruijn graphs with ggcat.
Genome Res. 33, 1198–1207 (2023).

11.	 Bloom, B. H. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 422–426 (1970).

12.	 Bingmann, T., Bradley, P., Gauger, F. & Iqbal, Z. COBS: a Compact
Bit-Sliced Signature index. String Processing and Information
Retrieval, SPIRE 2019. In Lecture Notes in Computer Science,
Vol. 11811 (Springer, Cham, 2019).

13.	 Solomon, B. & Kingsford, C. Improved search of large
transcriptomic sequencing databases using split sequence
Bloom trees. J. Comput. Biol. 25, 755–765 (2018).

14.	 Harris, R. S. & Medvedev, P. Improved representation of sequence
Bloom trees. Bioinformatics 36, 721–727 (2020).

15.	 Srikakulam, S. K., Keller, S., Dabbaghie, F., Bals, R. & Kalinina, O. V.
Metaprofi: an ultrafast chunked Bloom filter for storing and
querying protein and nucleotide sequence data for accurate
identification of functionally relevant genetic variants.
Bioinformatics 39, btad101 (2023).

16.	 The Ocean Read Atlas. OSU Institut Pytheas https://ocean-read-atlas.
mio.osupytheas.fr/ (2023).

17.	 Sunagawa, S. et al. Tara Oceans: towards global ocean
ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

18.	 Alanko, J. N., Vuohtoniemi, J., Mäklin, T. & Puglisi, S. J. Themisto:
a scalable colored k-mer index for sensitive pseudoalignment
against hundreds of thousands of bacterial genomes.
Bioinformatics 39, i260–i269 (2023).

19.	 Mehringer, S. et al. Hierarchical interleaved Bloom filter: enabling
ultrafast, approximate sequence queries. Genome Biol. 24, 131 (2023).

20.	 Marchet, C. & Limasset, A. Scalable sequence database search
using partitioned aggregated Bloom comb trees. Bioinformatics
39, i252–i259 (2023).

21.	 Lemane, T., Medvedev, P., Chikhi, R. & Peterlongo, P. kmtricks:
efficient and flexible construction of Bloom filters for large
sequencing data collections. Bioinform. Adv. 2, vbac029 (2022).

22.	 Villar, E. et al. The Ocean Gene Atlas: exploring the biogeography of
plankton genes online. Nucleic Acids Res. 46, W289–W295 (2018).

23.	 Vernette, C. et al. The Ocean Gene Atlas v2. 0: online exploration
of the biogeography and phylogeny of plankton genes. Nucleic
Acids Res. 50, W516–W526 (2022).

24.	 Acinas, S. G. et al. Deep ocean metagenomes provide insight
into the metabolic architecture of bathypelagic microbial
communities. Commun. Biol. 4, 604 (2021).

25.	 Robidou, L. & Peterlongo, P. findere: fast and precise approximate
membership query. In International Symposium on String
Processing and Information Retrieval 151–163 (Springer, 2021).

26.	 fio. GitHub https://github.com/axboe/fio (2023).
27.	 DOI of the provided ORA server GitLab code. Zenodo

https://doi.org/10.5281/zenodo.10462412 (2024).
28.	 European Nucleotide Archive. European Bioinformatics Institute

https://www.ebi.ac.uk/ena/ (2023).
29.	 Tara Oceans Consortium, Coordinators; Tara Oceans Expedition,

Participants. Registry of all samples from the Tara Oceans
Expedition (2009–2013). PANGAEA https://doi.org/10.1594/
PANGAEA.875582 (2017).

30.	 Guidi, L., Gattuso, J.-P. & Pesant, S. Tara Oceans Consortium,
Coordinators; Tara Oceans Expedition, Participants.
Environmental context of all samples from the Tara Oceans
Expedition (2009–2013), about carbonate chemistry in the
targeted environmental feature. PANGAEA https://doi.org/
10.1594/PANGAEA.875567 (2017).

31.	 Tara Oceans Consortium, Coordinators; Tara Oceans
Expedition, Participants. Biodiversity context of all samples
from the Tara Oceans Expedition (2009–2013). PANGAEA
https://doi.org/10.1594/PANGAEA.853809 (2015).

http://www.nature.com/natcomputsci
https://github.com/pierrepeterlongo/kmindex_benchmarks
https://github.com/tlemane/kmindex
https://github.com/tlemane/kmindex
https://tlemane.github.io/kmindex/
https://tlemane.github.io/kmindex/
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1101/2020.10.01.322164
https://ocean-read-atlas.mio.osupytheas.fr/
https://ocean-read-atlas.mio.osupytheas.fr/
https://github.com/axboe/fio
https://doi.org/10.5281/zenodo.10462412
https://doi.org/10.5281/zenodo.10462412
https://www.ebi.ac.uk/ena/
https://doi.org/10.1594/PANGAEA.875582
https://doi.org/10.1594/PANGAEA.875582
https://doi.org/10.1594/PANGAEA.875567
https://doi.org/10.1594/PANGAEA.875567
https://doi.org/10.1594/PANGAEA.853809

Nature Computational Science | Volume 4 | February 2024 | 104–109 109

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

32.	 Guidi, L. et al. Tara Oceans Consortium, Coordinators; Tara
Oceans Expedition, Participants. Environmental context of all
samples from the Tara Oceans Expedition (2009–2013), about
pigment concentrations (HPLC) in the targeted environmental
feature. PANGAEA https://doi.org/10.1594/PANGAEA.875569
(2017).

33.	 Ardyna, M. et al. Tara Oceans Consortium, Coordinators; Tara
Oceans Expedition, Participants. Environmental context of all
samples from the Tara Oceans Expedition (2009–2013), about
mesoscale features at the sampling location. PANGAEA
https://doi.org/10.1594/PANGAEA.875577 (2017).

34.	 Guidi, L. et al. Tara Oceans Consortium, Coordinators; Tara
Oceans Expedition, Participants. Environmental context of all
samples from the Tara Oceans Expedition (2009–2013), about
nutrients in the targeted environmental feature. PANGAEA
https://doi.org/10.1594/PANGAEA.875575 (2017).

35.	 Guidi, L., Picheral, M. & Pesant, S. Tara Oceans Consortium,
Coordinators; Tara Oceans Expedition, Participants.
Environmental context of all samples from the Tara Oceans
Expedition (2009–2013), about sensor data in the targeted
environmental feature. PANGAEA https://doi.org/10.1594/
PANGAEA.875576 (2017).

36.	 Alberti, A. & Pesant, S. Tara Oceans Consortium, Coordinators;
Tara Oceans Expedition, Participants. Methodology used in
the lab for molecular analyses and links to the Sequence Read
Archive of selected samples from the Tara Oceans Expedition
(2009–2013). PANGAEA https://doi.org/10.1594/PANGAEA.875581
(2017).

37.	 Speich, S. et al. Tara Oceans Consortium, Coordinators; Tara
Oceans Expedition, Participants. Environmental context of all
samples from the Tara Oceans Expedition (2009–2013), about the
water column features at the sampling location. PANGAEA
https://doi.org/10.1594/PANGAEA.875579 (2017).

38.	 Overview. Ocean Read Atlas https://ora.mio.osupytheas.fr/
manual/pages/ (2023).

39.	 Interfaces. Ocean Read Atlas https://ora.mio.osupytheas.fr/
manual/pages/interfaces.html (2023).

40.	 pierrepeterlongo/kmindex_benchmarks: initial release. Zenodo
https://doi.org/10.5281/zenodo.10462379 (2024).

41.	 DOI of the kmindex GitHub repository. Zenodo https://doi.org/
10.5281/zenodo.10462427 (2024).

Acknowledgements
We acknowledge the GenOuest core facility (https://www.genouest.
org) and the TGCC (https://www-hpc.cea.fr/index-en.html) for
providing the computing infrastructure, as well as France Génomique
for funding of the TGCC computing resources used to process data
used in this article. The authors thank J.-M. Aury for his help regarding
the usage of the Tara Oceans datasets. Tara Oceans (which includes
both the Tara Oceans and Tara Oceans Polar Circle expeditions) would
not exist without the leadership of the Tara Ocean Foundation and
the continuous support of Tara Oceans consortium members. The
authors also thank K. Andre and M. Harun for their help regarding the
usage of MetaGraph, A. Cracco and A. Tomescu for their help using
ggcat, and C. Marchet and A. Limasset for their support using PAC.
The web server is hosted by the OSU Pythéas cluster with the help
of C. Blanpain and SIP members. A. Malgoyre from SIP is thanked for

the development of the OSU Pythéas GitLab. The work was funded by
ANR SeqDigger (ANR-19-CE45-0008) and the IPL Inria Neuromarkers,
and received some support from the French government under the
France 2030 investment plan, as part of the Initiative d’Excellence
d’Aix-Marseille Université - A*MIDEX - Institute of Ocean Sciences
(AMX-19-IET-016). This work is part of the ALPACA project that has
received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant
agreement nos. 956229 and 872539 (PANGAIA). R.C. was supported by
ANR Full-RNA, Inception and PRAIRIE grants (ANR-22-CE45-0007, PIA/
ANR16-CONV-0005 and ANR-19-P3IA-0001). The funders had no role
in study design, data collection and analysis, decision to publish or
preparation of the manuscript.

Author contributions
T.L., E.P., R.C. and P.P. have conceptualized the project. T.L., R.C. and
P.P. developed the methodology. T.L. implemented the software.
T.L. and P.P. conceived and conducted the experiments. M.L. and
E.P. provided the data. T.L., R.C. and P.P. wrote the manuscript. N.L.,
J.L. and M.L. implemented and deployed the ORA server. R.C. and
P.P. supervised the work. M.L., R.C. and P.P. obtained the funding. All
authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s43588-024-00596-6.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s43588-024-00596-6.

Correspondence and requests for materials should be addressed to
Téo Lemane or Pierre Peterlongo.

Peer review information Nature Computational Science thanks
Natapol Pornputtapong, Guohua Wang and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available. Primary Handling Editor: Ananya
Rastogi, in collaboration with the Nature Computational Science team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

http://www.nature.com/natcomputsci
https://doi.org/10.1594/PANGAEA.875569
https://doi.org/10.1594/PANGAEA.875577
https://doi.org/10.1594/PANGAEA.875577
https://doi.org/10.1594/PANGAEA.875575
https://doi.org/10.1594/PANGAEA.875575
https://doi.org/10.1594/PANGAEA.875576
https://doi.org/10.1594/PANGAEA.875576
https://doi.org/10.1594/PANGAEA.875581
https://doi.org/10.1594/PANGAEA.875579
https://doi.org/10.1594/PANGAEA.875579
https://ora.mio.osupytheas.fr/manual/pages/
https://ora.mio.osupytheas.fr/manual/pages/
https://ora.mio.osupytheas.fr/manual/pages/interfaces.html
https://ora.mio.osupytheas.fr/manual/pages/interfaces.html
https://doi.org/10.5281/zenodo.10462379
https://doi.org/10.5281/zenodo.10462427
https://doi.org/10.5281/zenodo.10462427
https://www.genouest.org
https://www.genouest.org
https://www-hpc.cea.fr/index-en.html
https://doi.org/10.1038/s43588-024-00596-6
https://doi.org/10.1038/s43588-024-00596-6
http://www.nature.com/reprints

Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

Extended Data Table 1 | Description of the indexed dataset organized by size fraction. The “Fraction size” column indicates
the size range of the target sequenced species

http://www.nature.com/natcomputsci

	Indexing and real-time user-friendly queries in terabyte-sized complex genomic datasets with kmindex and ORA

	kmindex has better index construction performance

	kmindex enables real-time queries

	kmindex allows highly accurate queries

	kmindex provides a high level of usability

	Indexing 1,393 Tara Oceans samples in the ORA web server

	Methods

	Index construction

	Index query

	Reducing the FP rate

	Benchmark setup

	The ORA server

	Dataset
	ORA server workflow
	About ORA usages and limitations

	Reporting summary

	Acknowledgements

	Fig. 1 kmindex: an overview of the data structure and the query process.
	Table 1 Overview of index construction and read query performance of kmindex compared to MetaProFi and COBS, on 50 Tara Ocean samples.
	Extended Data Table 1 Description of the indexed dataset organized by size fraction.

