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Indexing and real-time user-friendly queries 
in terabyte-sized complex genomic datasets 
with kmindex and ORA

Téo Lemane    1,2  , Nolan Lezzoche3, Julien Lecubin4, Eric Pelletier    2,5, 
Magali Lescot3,5, Rayan Chikhi6 & Pierre Peterlongo    1 

Public sequencing databases contain vast amounts of biological 
information, yet they are largely underutilized as it is challenging to 
efficiently search them for any sequence(s) of interest. We present kmindex, 
an approach that can index thousands of metagenomes and perform 
sequence searches in a fraction of a second. The index construction is an 
order of magnitude faster than previous methods, while search times are 
two orders of magnitude faster. With negligible false positive rates below 
0.01%, kmindex outperforms the precision of existing approaches by four 
orders of magnitude. Here we demonstrate the scalability of kmindex by 
successfully indexing 1,393 marine seawater metagenome samples from  
the Tara Oceans project. Additionally, we introduce the publicly accessible 
web server Ocean Read Atlas, which enables real-time queries on the Tara 
Oceans dataset.

Public genomic datasets are growing at an exponential rate. They con-
tain treasures of genomic information that enable groundbreaking 
discoveries in fundamental domains such as agronomy, ecology and 
health1,2. Unfortunately, despite their public availability in repositories 
such as the Sequence Read Archive3, these resources, measured in peta-
bytes, are rarely ever reused globally because they cannot be searched 
efficiently. Many methodological developments toward sequencing 
data search engines have been introduced in recent years4,5. Current 
methods for searching genomic sequencing data look for k-mers (words 
of fixed length k, with k usually in [20; 50]) shared between a query 
sequence and each sample present in a reference database. The cen-
tral operation is thus to determine, for each k-mer, in which indexed 
sample(s) it occurs.

In this Brief Communication, we focus on the challenge of indexing 
and querying large and complex metagenomic datasets. By ‘complex’ 
we arbitrarily design any dataset totaling over a hundred billion distinct 
k-mers. This is frequently observed in environmental metagenomic 

projects. Given the data size, that is, thousands of samples totaling tens 
of terabytes of compressed data, and its complexity, that is, thousands 
of billions of distinct k-mers, the computational challenge is immense. 
Once k-mers are extracted from raw data and filtered, a data structure 
is built to associate each k-mer to the sample(s) in which it occurs.

Techniques for associating k-mers to samples can be divided into 
three categories: sketching approaches that heavily subsample k-mers, 
exact data structures storing all k-mers and approximate membership 
data structures such as Bloom filters (BFs). Sketching approaches 
such as sourmash6 or Needle7 typically suffer from high false negative 
rates when short sequences are queried and are thus out of the scope 
of this work. Methods based on exact representations (for example,  
MetaGraph8, BiFrost9 and ggcat10) suffer from low scalability, as high-
lighted by our results. We are thus left with methods based on BFs11, 
such as COBS12 and SBT13, later improved by HowDeSBT14 and more 
recently by MetaProFi15, which is able to index billions of k-mers using 
only a few dozen of gigabytes of space.

Received: 12 July 2023

Accepted: 16 January 2024

Published online: 26 February 2024

 Check for updates

1Univ. Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, France. 2Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, 
Univ. Evry, Université Paris-Saclay, Evry, France. 3Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography 
(MIO), UM 110, Marseille, France. 4SIP, OSU PYTHEAS, Marseille, France. 5Research Federation for the Study of Global Ocean Systems Ecology and 
Evolution, FR2022/Tara Oceans GO-SEE, CNRS, Paris, France. 6Institut Pasteur, Université Paris Cité, G5 Sequence Bioinformatics, Paris, France.  

 e-mail: teo.lemane@genoscope.cns.fr; pierre.peterlongo@inria.fr

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00596-6
http://orcid.org/0000-0002-7210-3178
http://orcid.org/0000-0003-4228-1712
http://orcid.org/0000-0003-0776-6407
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00596-6&domain=pdf
mailto:teo.lemane@genoscope.cns.fr
mailto:pierre.peterlongo@inria.fr


Nature Computational Science | Volume 4 | February 2024 | 104–109 105

Brief Communication https://doi.org/10.1038/s43588-024-00596-6

deployment of real-time query servers as presented in the next section. 
Of note, kmindex also offers a ‘fast mode’, presented in Supplementary 
Section 1.5, that uses more RAM to achieve even faster queries.

kmindex allows highly accurate queries
The kmindex, MetaProFi and COBS scalability is achieved thanks to 
the usage of BFs that generate FP calls at query time. FP rate analyses, 
summarized in Table 1, show that, for a similar index size, MetaProFi 
and COBS present sensible FP hits, on average 11.18% and 13.29%, respec-
tively, over the 50 answers (one per indexed sample). In contrast, the 
kmindex FP rate is negligible (below 10−2% on average).

kmindex provides a high level of usability
kmindex enables to add new samples to an index. A novel and independ-
ent index can be registered with a previous one. At query time, each 
registered index is queried independently. This offers the possibility to 
query only a subset of the registered indexes. This is well adapted when 
indexing samples with distinct characteristics. Alternatively, users can 
extend an existing index, and the parameters of the previous index 
(such as the ad-hoc hash function or the BF sizes) are automatically 
reused. This second choice is less flexible but provides better perfor-
mances at query time (see results presented in Supplementary Section 
1.5). Also, kmindex enables the filtration of erroneous k-mers, not only 
relying on their abundance in a dataset but also on their co-abundances 
in all indexed datasets. This enables to ‘rescue’ low-abundance k-mers 
that would have otherwise been removed. To the best of our knowl-
edge, no other indexing tool can integrate this feature. This feature is 
inherited from the kmtricks21 algorithm.

kmindex query results can be provided with various degrees of pre-
cision. For each indexed sample, users can access the average similarity 
of queried sequences or a similarity value per queried sequence. kmin-
dex can provide the distribution of hits, enabling to highlight some 
regions of interest among the queried sequences. Finally, kmindex is 
well documented and simple to install. Queries can be performed via 
a command line Interface, via an application programming interface 
or a hypertext transfer protocol (HTTP) server.

Indexing 1,393 Tara Oceans samples in the ORA web server
With kmindex, we built and made available a public web interface able 
to perform queries on a dataset composed of 1,393 samples (distinct 
locations and distinct fraction sizes) of the Tara Oceans project17 rep-
resenting 36.7 TB of raw fastq.gz files. A user can query sequences, 
determining their similarity with the 1,393 indexed samples. A world 
map depicts the resulting biogeography, as well as the environmental 
parameters associated with the sequences.

Note that, for reasons of robustness and continuity of service, the 
index is deployed on a networked and redundant filesystem with lower 
performances compared to the benchmark environment, although 
suitable for this type of service. Details about indexed read sets, and 
more information about the server architecture and setup, are provided 
in ‘The ORA server’ section in Methods.

When indexing large and complex metagenomic datasets, existing 
tools face important limitations in either disk usage, memory usage, 
computation time (either during indexing and/or query), false posi-
tive (FP) rate or false negative rate. Overcoming all these limitations 
simultaneously makes the design of an efficient data indexing strategy 
particularly challenging. We present kmindex, a tool that performs 
indexing and queries using orders of magnitude fewer resources than 
previous approaches. Also, kmindex provides results with no false 
negative calls and with negligible FP rates, approximately four orders 
of magnitude smaller than those obtained by other tools. kmindex is 
primarily designed for indexing complex sequencing samples. Owing 
to engineering choices, it is currently not suited for indexing large 
collections of genomes (that is, hundreds of thousands of samples).

To showcase the features of kmindex on a dataset of high biological 
interest, we introduce a web server named ‘Ocean Read Atlas’ (ORA) 
available at ref. 16. ORA allows to search one or several sequences across 
all of Tara Oceans metagenomic raw sequencing data17. It enables the 
visualization of the results on a geographic map and their correlation 
with each of the 56 environmental variables collected during the cir-
cumnavigation campaign. The ORA server enables to perform instant 
searches on a large and complex dataset, providing new perspectives 
on the deep exploitation of Tara Oceans resources.

We evaluated the performances of kmindex together with eight 
state-of-the-art k-mer indexers: themisto18, ggcat10, HIBF19, PAC20, 
MetaProFi15, MetaGraph8, Bifrost9 and COBS12. The dataset for this 
benchmark is composed of metagenomic seawater sequencing data 
from 50 Tara Oceans samples, of 1.4 TB of gzipped fastq files. It contains  
approximately 1,420 billion k-mers. Among them, approximately  
394 billion are distinct, and 132 billion occur twice or more.

The benchmarking setup is described in ‘Benchmark setup’ section  
in Methods. The results of all the following claims are described in 
Supplementary Section 1.

kmindex has better index construction performance
Among the nine tested tools, only MetaProFi, COBS and kmindex 
completed the index creation phase and were able to perform queries 
correctly. As shown in Table 1, building an index with kmindex is an 
order of magnitude faster than MetaProFi and COBS, and uses 2.6× less  
memory and 6.5× less disk. The final index sizes are all within the same 
magnitude range, with the smallest one produced by kmindex. The 
kmindex construction took less than 3 h, a peak random-access memory 
(RAM) of 107 GB and a peak disk usage of 878 GB.

kmindex enables real-time queries
As shown in Table 1, at query time, kmindex outperforms MetaProFi 
and COBS in terms of both computation time and memory resources 
(Supplementary Section 1.2). kmindex is between 20 and 200 times 
faster than MetaProFi and COBS for querying one read or millions of 
reads. kmindex is capable of performing millions of queries in a matter 
of minutes while allowing real-time resolution for small queries. This 
opens the doors to analyzing complete read sets as queries, and the 

Table 1 | Overview of index construction and read query performance of kmindex compared to MetaProFi and COBS, on 50 
Tara Ocean samples

Build index Query time FP rate (%)

RAM Disk Index size Number of queried reads

Time GB GB GB 1 10 million Average Maximum

MetaProFi 30 h 15 min 278 5,684 226 12.72 s 1 h 29 min 11.18 21.55

COBS 26 h 30 min 278 5,684 184 1.51 s 15 h 56 min 13.29 24.60

kmindex 2 h 56 min 107 878 164 0.06 s 4 min 21 s 0.006 0.18

These are the only tools that succeeded in building an index and perform queries. The ‘RAM’ and ‘Disk’ columns provide the peak usage during the building process. The COBS and MetaProFi 
RAM and disk peaks are identical as they correspond to the same k-mer counting and filtration step. Queries are composed of one read and 10 million reads uniformly sampled from the 50 Tara 
Oceans datasets. All executions were performed on a cold cache. Extended results are presented in Supplementary Section 1. Bold texts highlight the best values.

http://www.nature.com/natcomputsci
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The resulting web server named ORA, whose representation is 
provided in Supplementary Fig. 2, extends the ‘Ocean Gene Atlas’ 
server22,23 that supports queries to assembled genes from Tara Oceans17 
and Malaspina24. We believe this server will be of great importance to 
the Tara Oceans consortium as a whole, and more broadly to anybody 
interested in marine genetic data.

In conclusion, we present kmindex, which could open up a new chan-
nel for leveraging genetic data, removing the obstacles that often isolate 
studies from each other. Currently, kmindex only indexes the presence 
of a k-mer in a given sample. Hence, there is room for improvement by 
allowing the indexing of the abundance of each k-mer in each sample. 
The ability to perform fast queries is achieved by not compressing the 
data structure. As a result, the indexes are approximately 10% the size of 
the compressed input data, which can be a major limitation to scale-up 
to petabyte-size datasets. An area for future research will involve devel-
oping compression schemes specifically tailored to this framework.

Methods
Conceptually, the presence of each indexed k-mer is stored in one BF 
per input read set. The BF construction relies on kmtricks21, which 
allows to filter erroneous k-mers and to efficiently build a partitioned 
matrix of BFs. Each partition indexes a subset of k-mers corresponding 
to a specific set of minimizers. In practice, with kmindex, matrices are 
inverted to limit cache misses during the query process, that is, each 
row is a bit vector representing the presence/absence of a k-mer in each 
indexed sample. At query time, k-mers from queried sequences are 
grouped into batches, and, avoiding cache misses, BFs are queried to 
determine the presence or absence of each k-mer in each input dataset.

Index construction
The construction of BFs from raw sequencing data is delegated to 
kmtricks21, which allows partitioned construction of one-hash BF matri-
ces. For each input dataset, k-mers are counted and filtered on the 
basis of their abundance. Additionally, and contrary to other methods, 
during one of the index-building steps, for a given k-mer, its abundance 
in all datasets is known. This offers the possibility to conserve a k-mer 
having an abundance lower than the fixed threshold, which would be 
filtered out by other methods, but having some occurrences in the 
other datasets. This may reflect the presence in one of the samples of 
a low-abundant species for which we want to preserve the data. Once 
k-mers are filtered, submatrices are built. Each submatrix indexes a 
subset of k-mers matching a specific set of minimizers.

As represented in Fig. 1 (right), the resulting index built by kmindex 
consists of P distinct matrices (with P being the number of partitions, 
equal to 3 in the figure). To save indexing and query time, the index is 
‘inverted’: given a k-mer, the N bits indicating its presence/absence in 
the N indexed datasets are consecutive in the index. This allows for fast 
queries across numerous datasets. Hence, in practice, in a matrix, each 
row is a bit vector representing the presence or absence of a hash value 
in each indexed sample. Note that the rows are not packed to save 
construction and query time. This results in the fact that each row is 
composed of ⌈ N

8
⌉ × 8 bits. Doing so, min(0,8 − Nmod8) bits are unused 

for each row, as represented by a double arrow in Fig. 1. This is up to 7 
bits per row. These few lost bits may appear as a drawback, but this is 
negligible regarding the N value that is meant to be in the order of a few 
hundred or thousands, and, importantly, this enables us to efficiently 
append novel indexed samples to an existing index.

By default, the resulting index is not compressed. Although requir-
ing more space, this ensures optimal access time (both for writing 
and reading), and it offers the possibility to dynamically append new 
datasets to an existing index.

Index query
The query process introduced in kmindex is also sketched in Fig. 1. 
Batch processing is used for queries. This allows maximum throughput 

while maintaining control over memory usage. The user can specify the 
batch size and the maximum number of parallel batches according to 
the system’s capabilities.

The resolution of a batch proceeds as follows:

	 1.	 Bucketing. The index is organized by partition, each corres
ponding to a set of minimizers. The first step consists of split-
ting query sequences into k-mers, which are then hashed and 
inserted into the right partition according to their minimizers. 
Each k-mer partition of the batch can then be solved by query-
ing the corresponding index partition.

	 2.	 Sorting. Each partition is sorted to enable its resolution in a 
single sequential pass on the corresponding index partition, 
reducing cache misses.

	 3.	 k-Mer level resolution. Querying a specific k-mer consists of 
fetching the row that corresponds to its hash value in the index 
to retrieve the bit vector corresponding to its presence or ab-
sence in each sample. For each query, the response vectors are 
aggregated by summation, resulting in an integer vector that 
represents the number of positive hits in each indexed sample. 
Obtaining the response vector for each k-mer is the current  
bottleneck because of input/output (I/O) operations. For this 
reason, instead of loading the index into memory, index  
partitions are read through memory-mapped files. This allows 
reading only the parts of the index that are relevant to the 
batch resolution, which is particularly beneficial in the case of 
small queries. 
The memory-mapped files can be managed in two different 
ways. Normal mode: each batch manages its own mappings 
of index partitions. The mapping of a partition is closed as 
soon as all k-mers belonging to the partition are resolved. 
The cached pages are then marked as available for eviction, 
resulting in lower memory usage (see results presented in Sup-
plementary Section 1.4). Fast mode: all batches share the same 
mappings. This way, a larger number of pages are kept in the 
cache when conditions are favorable, that is, without memory 
pressure, avoiding possible new I/O operations when solving 
the remaining batches. The memory usage may therefore 
seem high due to important page caching, up to the size of the 
index in the context of large query sets. Note that both modes 
require the same minimum amount of memory; the other part 
of the memory usage corresponds only to page caching, which 
is automatically managed by the kernel. In other words, under 
memory pressure, both modes show the same memory usage.

	 4.	 Sequence-level resolution. Finally, a result file is generated 
in either ‘json’ or ‘tsv’ format depending on the user’s choice. 
Query results are filtered on the basis of the threshold specified 
by the user. The user can also request the distribution of hits 
along the query sequences, represented as a binary vector.

Reducing the FP rate
The kmindex algorithm embeds the findere approach25. findere enables 
a drastic reduction of the FP rate when querying successive k-mers 
from a query while using an approximate membership query (AMQ) 
data structure (such as BFs) for indexing. For each indexed dataset, the 
central idea consists in indexing its s-mers instead of its k-mers in the 
AMQ, with s ≤ k. At query time, a k-mer is considered as existing in the 
dataset if all its k − s + 1 constituent s-mers are reported as present by 
the AMQ. In the general case, using this approach, a k-mer is wrongly 
reported as present (a FP) when all its s-mers are themselves FPs. This 
has the effect of exponentially decreasing the FP rate with respect to the 
k − s value. When querying k-mers from a sequence of length n, in the 
general case, n − k + 1 calls to the AMQ have to be made. Using findere, 
n − s + 1 calls must be made (k − s more than without using findere).  
This has negligible and no measurable impact on query time.

http://www.nature.com/natcomputsci
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Benchmark setup
In situations involving large indexes and queries, various factors such 
as I/O operations or caching can impact performance. To account for 
these effects, we performed the benchmarks from a user’s perspective. 
As a result, all measurements are obtained using the command line 
tools with particular attention to caching effects. The reported values 
include input parsing, query execution and output writing. The results, 
presented in Supplementary Section 1.4, demonstrate the performance 
in a cold (the most likely and also the least favorable) or warm cache 
context. We recall that the dataset for this benchmark is composed of 
metagenomic seawater sequencing data from 50 Tara Oceans samples, 
of 1.4 TB of gzipped fastq files. It contains approximately 1,420 billion 
k-mers. Among them, approximately 394 billion are distinct, and 132 
billion occur twice or more. These data are publicly available.

Executions were performed on the GenOuest platform on a node 
with 64 cores (128 threads) Xeon 2.2 GHz (L1, 48 KB; L2, 1.25 MB; L3, 
48 MB shared) with 900 GB of memory. All computations are per-
formed on an xfs filesystem allowing 1,052 MB s−1 sequential reads, 
473 MB s−1 sequential writes and 908 MB s−1 random reads (throughput 
measurements are obtained using fio26). All tested tools were param-
eterized to use 32 threads.

See ‘Code availability’ section for information about used commands, 
data accession identifiers, input random sequence and output files.

The ORA server
Dataset. The ORA27 index is composed of 1,393 samples (distinct loca-
tions and distinct fraction sizes) of the Tara Oceans project. These sam-
ples are divided into six distinct groups, determined by the size fraction 
of the sequenced species. These fractions correspond to the physical 
filter sizes used during the sampling campaign. Based on this clustering 
we built six distinct indexes (all with the same parameters). At query 
time, as all the six indexes are registered in a unique meta-index, the 
whole set of samples is queried. A description of the dataset is available 
in Extended Data Table 1. The size of the final uncompressed index is 
approximately 13% of the size of the raw fastq.gz files, which is 36.7 TB.

Sequencing data availability. Shotgun metagenomic sequences of all 
the samples from the Tara Oceans Expedition (2009–2013) are avail-
able at the European Nucleotide Archive28 under global accession 

number PRJEB402 (PRJEB1787 and PRJEB9740 for bacteria and archaea, 
PRJEB1788 for giant viruses, PRJEB4352 and PRJEB9691 for protists, and 
PRJEB4419 and PRJEB9742 for DNA viruses).

Environmental data. The environmental data are from the Tara Oceans 
Expedition (2009–2013) and are available on PANGAEA29. The environ-
mental database contains currently:

•	 BIODIV30

•	 CARB31

•	 HPLC32

•	 MESOSCALE33

•	 NUT34

•	 SENSORS35

•	 SEQUENCING36

•	 WATERCOLUMN37

ORA server workflow. Supplementary Fig. 1 shows an overview of 
the ORA server.

The ORA service is composed of three parts:

	 1.	 The environmental database containing the parameters meas-
ured and estimated during the sampling of the Tara Oceans 
Expedition;

	 2.	 The kmindex server to query the kmindex index made with 
sequencing reads from Tara Oceans Expedition via HTTP 
requests;

	 3.	 The ORA server to query the index and make the link between 
k-mers (contained in the query sequence) and the environ-
mental parameters of samples sharing these k-mers. ORA 
provides results on a webpage including maps, plots and  
table files.

A representation of these components is available in Supplementary 
Fig. 2.

kmindex server. The index is stored on a Ceph storage cluster (SSD 
pool). The CRUSH algorithm enables the Ceph storage cluster to scale, 
rebalance and recover data dynamically. Nodes of this storage cluster 
are on a redundant network using Link Aggregation Control Protocol 
trunking configuration.
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Fig. 1 | kmindex: an overview of the data structure and the query process. 
Right: data structure showing the stored index on disk. Vertical black rectangles 
represent the N BFs (one per input sample). The orange horizontal rectangles 
represent the actual data structure saved on disk, storing consecutively the 
0/1 values of distinct BFs for the same hash value. The three colored horizontal 
rectangles represent three partitions, each saved in a distinct file. Left: query 
example. Hashes of k-mers are symbolized by small horizontal lines, divided 
into two batches and grouped by partitions. Each group is sorted. Each cylinder 

represents the streaming of a set of hashed k-mers, querying lines of BFs mapped 
into memory. For simplicity, the image shows only queries from hashed k-mers 
from one of the two represented batches. In practice, for each partition, all 
batches are queried. For each sample, the results from each partition and each 
batch are finally summed up (as symbolized by the ‘Σ’ symbol in this figure). Also 
for simplicity, this figure does not represent the use case in which the distribution 
of hits along the query sequences is reported as a binary vector.
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The kmindex HTTP server runs in a Qemu/KVM virtual machine 
(VM) with 16 cores and 32 GB RAM, supporting 16 concurrent queries. 
VM is stored on a Proxmox virtualization cluster with HA capabilities. 
Depending on our available resources, storage and VM, capacities may 
be expanded if needed. This infrastructure is mandatory to ensure 
service continuity.

Supplementary Fig. 2 represents the overall ORA workflow.

About ORA usages and limitations. The service currently supports 
unique query of a FASTA file limited to 10 kilobase pairs via the web 
interface. Each user is limited to 200 jobs per 24 h. The results can either 
be delivered directly or sent by email with a link valid for 2 weeks. In the 
future and depending on our computational capacity, we expect to 
offer an application programming interface with more features such 
as the integration of the query abundance and metadata associated 
with target sequences.

A user guide manual is available at ref. 38, where the ‘Interfaces’ 
section39 provides a detailed explanation about the submission and 
results interfaces. Users can contact us by sending an email to ocean-
readatlas@mio.osupytheas.fr.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
A list of publicly available data used in this work is presented in 
the https://github.com/pierrepeterlongo/kmindex_benchmarks 
repository40.

Code availability
kmindex is an open-source software available at https://github.com/
tlemane/kmindex (ref. 41). The documentation is available at https://
tlemane.github.io/kmindex/. The exhaustive list of tool versions and 
commands used are presented in a companion website40, which also 
reports the FP computation protocols and a detailed description of 
the dataset considered for this benchmark. The ORA server code is 
available through a GitLab repository27.
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Extended Data Table 1 | Description of the indexed dataset organized by size fraction. The “Fraction size” column indicates 
the size range of the target sequenced species
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