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Abstract 

T he AlphaFold P rotein Str uct ure Database (AFDB) is the largest repository of accurately predicted str uct ures with taxonomic labels. Despite 
providing predictions for over 214 million UniProt entries, the AFDB does not cover viral sequences, severely limiting their study. To address 
this, we created the Big Fantastic Virus Database (BFVD), a repository of 351 242 protein str uct ures predicted by applying ColabFold to the viral 
sequence representatives of the UniRef30 clusters. By utilizing homology searches across t wo pet abases of assembled sequencing data, we 
impro v ed 36% of these str uct ure predictions be y ond ColabFold’s initial results. BFVD holds a unique repertoire of protein str uct ures as o v er 
62% of its entries show no or low str uct ural similarity to existing repositories. We demonstrate how a substantial fraction of bacteriophage 
proteins, which remained unannotated based on their sequences, can be matched with similar str uct ures from BFVD. In that, BFVD is on 
par with the AFDB, while holding nearly three orders of magnitude fe w er str uct ures. BFVD is an important vir us-specific expansion to protein 
str uct ure repositories, offering new opportunities to advance viral research. BFVD can be freely downloaded at bfvd.steineggerlab.workers.dev 
and queried using Foldseek and UniProt labels at bfvd.foldseek.com . 
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iruses are infectious agents that invade host cells, exploit-
ng their biological machinery for replication. They mu-
ate rapidly, evading existing treatments and immunity, thus
osing a persistent threat to public health ( 1 ). Their huge
enetic diversity, often reflected in < 30% amino acid se-
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quence identity between newly discovered viruses and known
ones, presents challenges for sequence-based annotation and
classification ( 2 ,3 ). In contrast, due to their direct effect
on function, protein structures tend to be more conserved,
which can be used for studying viral mechanisms ( 4–6 ).
Therefore, the availability of viral protein structures is crit-
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ical for viral annotation through the detection of structural
similarities. 

Recent advancements in computational protein structure
prediction ( 7–10 ) have made hundreds of millions of protein
structures available through repositories like the AlphaFold
Protein Structure Database (AFDB) ( 11 ,12 ) and the ESM Atlas
( 8 ). These repositories have been transformative for studying
the function of many proteins and protein families as a whole
( 13 ,14 ). Using the AFDB has also contributed to the study of
viruses, e.g. by improving the annotation of metagenomic bac-
teriophages ( 15 ) and by revealing viral proteins acquired from
their metazoan host ( 16 ). 

However, leveraging these vast resources for virus research
remains limited as the AFDB excludes viral proteins and the
ESM Atlas lacks taxonomic information, making it difficult
to identify viral proteins. Consequently, studying viral struc-
tures still relies on in-house prediction of protein structures
[e.g., ( 17 ,18 )], which is a time- and resource-consuming task.
Recently, notable efforts have been made to minimize the gap
in available viral structures, including the release of Herpes-
Folds ( 19 ), which offers high-quality structure predictions for
all nine human herpesviruses. In the same vein, Nomburg et al.
( 20 ) predicted 67 715 protein structures from 4463 species
of eukaryotic viruses, creating a resource—hereafter referred
to as ‘Nomburg24’—which has been integrated into the viral
repository ViralZone ( 21 ). Despite making milestone contri-
butions to the study of viruses, HerpesFolds and Nomburg24
are limited to eukaryotic viruses and do not cover other viral
clades. 

Here, we focused on the viral fraction of UniProt ( 22 ) by
examining its 30% sequence-identity clusters from UniRef30
( 23 ,24 ). We then predicted the protein structures of 351 242
cluster representatives of viral origin, whose clusters jointly
consisted of over three million protein sequences. We im-
proved the quality of 36% of these predictions by mining
petabases of assembled sequence reads in Logan ( 25 ), result-
ing in over 99 million similar sequences, added to the in-
put for structure prediction. This effort resulted in BFVD, the
largest repository of predicted viral structures to date. We
show that BFVD contains highly diverse structures of vari-
ous viral kingdoms, covering more viral variance than existing
resources. We then demonstrate using BFVD for discovering
similar structures to bacteriophage proteins, which could not
be annotated based on their sequences, highlighting its utility
tailored to viral research. 

Materials and methods 

P reparing UniR ef sequences for BFVD 

The clustering at 30% pairwise sequence identity of UniProt
( 22 ) sequences release 2023_02 were extracted from the
UniRef30 ColabFold database ( 10 , 23 , 24 ) at https://colabfold.
mmseqs.com . This dataset has 36 293 491 clusters, of which
347 514 have a viral sequence representative, as evident by
their assigned NCBI taxonomic identifier (taxid), which is a
descendant of taxid 10239 (‘Viruses’). These clusters jointly
contained 3 248 875 protein sequences and their 347 514 rep-
resentatives were collected for the construction of BFVD. To
limit the computational demand of the structure prediction
step, we ensured that no sequence exceeded 1500 residues
in length. To that end, the 3002 sequences longer than this
threshold were split into consecutive, non-overlapping frag-
ments, as follows. Let L be the length of such a sequence, then 

F = � L / 1500 � was the number of fragments it was divided 

to, and in each fragment there were R = � L / F � residues (ex- 
cept for the last, which may have been longer due to including 
the remainder). This splitting resulted in 6732 sequence frag- 
ments, two of which contained only ’X’ in their amino-acid 

sequence and were excluded, leaving 6730. BFVD was thus 
constructed from a total of 351 242 viral sequences. 

Taxonomic composition of BFVD 

The taxid for each BFVD sequence was retrieved from UniProt 
and its full lineage—from NCBI ( 26 ). The Sankey plot based 

on this information (Figure 1 A) was generated with Pavian 

( 27 ). At each taxonomic rank, only the ten most abundant 
taxa were included in the plot. 

Structure prediction 

Each of the 351 242 viral UniRef30 clusters is associated with 

two summary sequences: a representative and a consensus.
The former is a biological sequence, belonging to some virus,
and the latter is the computational summary of the UniRef30 

cluster. For the construction of BFVD we used both as follows.
Each consensus was used to query for homologs using colab- 
fold_search utilizing MMseqs2 (version ede0be1) ( 28 ) against 
the ColabFold ( 10 ) reference databases ‘uniref30_2022’ and 

‘colabfold_envdb_202108’ and for computing a multiple se- 
quence alignment (MSA), denoted here as the ‘base-MSA’.
Next, the structure of each representative sequence was pre- 
dicted based on its corresponding base-MSA using ColabFold 

v.1.5.2 ( 10 ) and the AlphaFold2 model with default param- 
eters, except for ‘--num-models’ and ‘--stop-at-score’, which 

were set to 3 and 85, respectively. For each representative, the 
best-ranking structural model according to the pLDDT score 
was kept. Predicting these structures took approximately one 
GPU-year of compute time spread across several weeks on 4 

to 14 NVIDIA RTX A5000 GPUs. 

Search for homologs in Logan 

The 175 788 viral UniRef30 consensus sequences which 

had fewer than 30 homologs in their base-MSA (see section 

‘Structure prediction’) were used to construct an amino-acid 

reference database using DIAMOND ( 29 ) v2.1.9 makedb 

command. Next, each of Logan’s ( 25 ) contigs V1 ( https: 
// github.com/ IndexThePlanet/ Logan/ blob/ main/ Stats-v1.md ) 
was searched against this reference database using DI- 
AMOND v2.1.9 blastx command (parameters: -c 1 - 
-masking 0 --sensitive -s 1 --evalue 1e-8 
-k 1 ). The script to distribute the search was obtained from 

https:// gitlab.pasteur.fr/ rchikhi _ pasteur/ logan-analysis . This 
search detected regions within 989 683 364 Logan amino- 
acid sequences, matching the BFVD. The redundancy of these 
regions was reduced by clustering them at 90% sequence- 
identity using the easy-linclust module of MMseqs2-Linclust 
( 30 ) (version: 15.6f452; parameters: --min-seq-id 0.9 
-c 0.9 --cov-mode 1 --kmer-per-seq 80 ), result- 
ing in a set of 99 115 059 Logan representative sequences.
Next, the 175 788 BFVD sequences were queried against the 
Logan redundancy-reduced set using MMseqs2 ( 28 ) search 

(version: 15.6f452; parameters: --max-seqs 10000 -s 
7 -e 0.1 ) followed by result2msa (parameters: --msa- 
format-mode 6 ). This resulted in Logan-MSAs, where 
the Logan homologs were aligned to the BFVD consensus 

https://colabfold.mmseqs.com
https://github.com/IndexThePlanet/Logan/blob/main/Stats-v1.md
https://gitlab.pasteur.fr/rchikhi_pasteur/logan-analysis
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Figure 1. BFVD composition and cluster analysis. (A) BFVD taxonomic composition. Shown at each rank are the 10 most abundant taxa. (B) Cumulative 
distributions of pLDDT scores among BFVD’s predicted str uct ures bef ore L ogan’s additional homologs (dashed) and after (full line). Over a half are highly 
confident. (C) Str uct ural redundancy reduction using Foldseek cluster . The number of str uct ural clusters, especially singletons, increases with the value 
of the co v erage parameter, though moderately until 70%. (D) An alluvial plot of BFVD str uct ures clustered at 70% coverage. pLDDT intervals indicated 
in color as in (B). Non-singleton proteins (left panel) are longer (left column) and ha v e more homologs in their MSAs (right column) than singleton 
proteins (right panel). 
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equence. Each Logan-MSA was then appended to its cor-
esponding base-MSA, creating joint MSAs, which were
rovided to ColabFold through the ‘custom MSA’ option (see
ox 3, ( 31 )). Using these, ColabFold repredicted the struc-
ures of the 175 788 UniRef30 representatives, as described in
he section ‘Structure prediction’. These predictions replaced
he ones based only on base-MSAs in the final set of BFVD
tructures. 

tructural clustering of BFVD 

he redundancy reduction of BFVD was performed as de-
cribed in ‘Results’ using the Foldseek v.9.427df8a easy-
luster module with coverage threshold of 70%. The same
oldseek version and the module search were used for query-
ing BFVD against itself for the web server using default pa-
rameters and an E-value threshold of 0.01. 

Comparing BFVD to AFDB50 and PDB100 

Foldseek ( 32 ) v.9.427df8a easy-search module was used to
query the structures of BFVD against those of AFDB50
( 12 ,14 ) and of PDB100 ( 32 ,33 ). The option ‘--greedy-
best-hits’ was enabled to cover each query with the best
match(es) to AFDB50 or PDB100. In case several matches
were found, the one with the highest query-normalized TM-
score ( 34 ) was selected. For residue-wise assessment, the
LDDT values computed by Foldseek for each alignment were
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Structural clustering of BFVD and Nomburg24 

The joint clustering of 351 242 BFVD structures and 67 715
Nomburg24 structures was performed as described in ‘Re-
sults’ following the steps of the Foldseek v.9.427df8a easy-
cluster module with a coverage threshold of 70%. This re-
sulted in 32 755 non-singleton clusters, of which 22 700 (con-
sisting of 97 365 structures) were unique to BFVD and 875
(2816 structures)—unique to Nomburg24 and the rest had a
structure from both databases. 

Bacteriophage annotation 

We followed the bacteriophage annotation pipeline by Say
et al. ( 15 ), with few modifications, as described in the follow-
ing. 

Obtaining and assembling the GAC6 sample. The dataset
for GAC6 was obtained from the European Nucleotide
Archive accession PRJEB49151 ( https:// www.ebi.ac.uk/ ena/
browser/ view/ PRJEB49151 ) by selecting ‘t3_may7-2020’ in
the ‘sample title’ field. The following steps were performed as
described by Say et al., using the same parameters: base call-
ing using Guppy v.6.3.8, filtering using NanoFilt ( 35 ) v.2.8.0
and assembly using Flye ( 36 ) v.2.9.3-b1797. Unlike Say et al.,
we omitted the secondary assembly step and directly extracted
circularized assemblies with a minimum coverage of ten. 

Read mapping and polishing. Reads were mapped to each
assembly using Minimap2 ( 37 ) v2.24, filtered by Gerenuq
( https:// doi.org/ 10.5281/ zenodo.5119771 ) v.0.2.3 and pol-
ished by Minipolish ( 38 ) v.0.1.3, using the same parameters
as Say et al. 

Bacteriophage detection. Following Say et al., the polished
assemblies were annotated with Bakta ( 39 ) v.1.5.1 and then
with INHERIT ( 40 ), retaining only assemblies annotated as
bacteriophages. 

Structure prediction. In all, 1329 proteins on 17 contigs
were annotated as ‘bacteriophage’ at the end of the last step.
Like Say et al., we predicted the structures of these sequences
using ColabFold v.1.5.5 with the same arguments. We retained
for each sequence the best-ranking structural model according
to the pLDDT score. 

Bakta-hypothetical and Foldseek search. Like Say et al., we
counted proteins which Bakta did not annotate and labeled as
‘hypothetical’ as Bakta-hypothetical. The predicted structures
of all Bakta-hypothetical proteins (1221) were queried using
Foldseek v.9.427df8a easy-search module against the AFDB,
with an E-value cutoff of 0.001, as in Say et al . In addition,
they were queried against BFVD and Nomburg24. The search
results against the BFVD and the AFDB were also merged and
examined together. 

Results 

Construction of the Big Fantastic Virus Database 

(BFVD) 

We first collected the representative protein sequences from
UniRef30’s viral clusters, covering major viral clades (Figure
1 A). To limit the computational demand of structure predic-
tion, we split 3002 sequences longer than 1500 residues ( < 1%
of all) into 6730 sequence fragments. These fragments and
the other sequences were provided as queries to ColabFold.
After collecting homologs for each query, ColabFold com-
puted its associated base multiple sequence alignment (base-
MSA, see Methods) and predicted its structure. This resulted
in 351 242 viral protein structures with a median predicted 

Local Distance Difference Test (pLDDT) of 70.18 and an in- 
terquartile range (IQR) of 55.8–82.2, indicating medium con- 
fidence (Figure 1 B, dashed). As previously reported, predic- 
tion accuracy is negatively affected by an insufficient number 
of homologs in the MSA used for structure prediction, espe- 
cially when there are fewer than 30 sequences ( 7 ,41 ). Indeed,
among the low-confidence structure predictions (pLDDT < 

50), the majority (72%) had fewer than 30 homologs in their 
base-MSA. 

Logan homologs improve BFVD’s structures 

Therefore, we focused on 175 788 BFVD structures, which 

had shallow base-MSAs ( < 30 homologs) and used Logan 

( 25 ), a recently-released assemblage of the Sequence Read 

Archive ( 42 ), to seek additional homologs for them, in two 

petabases of assembled contigs. Using DIAMOND, we de- 
tected over 989 million sequences in Logan similar to the 
shallow BFVD set. We reduced their redundancy by cluster- 
ing them at 90% sequence-identity with MMseqs2-Linclust,
keeping ca. 99 million Logan representatives. We then used 

MMseqs2 to search the Logan representatives and compute 
Logan-MSAs for the 175 788 BFVD sequences. Finally, we 
appended the Logan-MSAs to their corresponding ColabFold 

base-MSAs, resulting in substantially deeper joint MSAs (92.4 

homologs on average (median: 18), compared to 7.4 (median: 
4) without the Logan addition). Repredicting the structures 
using the joint MSAs improved in turn the quality of predic- 
tions for 35.6% of the BFVD structures, increasing the overall 
median of 70.18 pLDDT (IQR: 55.8–82.2) to 74 (IQR: 60.7–
84.7) (Figure 1 B). 

Viral coverage of BFVD 

To check BFVD’s span, we predicted the structures of en- 
tire proteomes of seven highly varied viruses (differ by 
DNA / RNA, single / double stranded, genome size and host) 
using ColabFold ( Supplementary Figure 1 ). We then used 

Foldseek to query these proteomes against BFVD and found 

that six out of seven viruses had a match in BFVD for 
most (92–100%) of their predicted proteins ( Supplementary 
Figure 1 ). One proteome, that of S AR S-CoV-2, had BFVD 

matches for only 65% of its 23 predicted structures. How- 
ever, examining the unmatched proteins revealed they were 
generally short and unstructured. 

BFVD structural clustering analysis 

Next, we reduced structural redundancy in BFVD by using 
Foldseek cluster to group together similar structures. We first 
studied the number of clusters obtained under different val- 
ues of the Foldseek cluster coverage parameter (Figure 1 C).
This parameter determines the minimal bidirectional cover- 
age between a cluster representative and each cluster member,
with lower values being more permissive. The total number 
of clusters increased from 193 787 to 276 477 following an 

increase in the coverage parameter. Furthermore, over 48% of 
the BFVD structures did not cluster and remained as single- 
tons even at the lowest coverage threshold. 

To investigate possible reasons why so many BFVD pro- 
tein structures failed to cluster, we focused on the cluster- 
ing with 70% coverage cutoff, below which the number of 
singletons plateaued (Figure 1 C). We compared BFVD struc- 
tures clustered as non-singletons and as singletons (Figure 1 D) 

https://www.ebi.ac.uk/ena/browser/view/PRJEB49151
https://doi.org/10.5281/zenodo.5119771
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1119#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1119#supplementary-data
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Figure 2. The BFVD web server. (A) Users can query BFVD by UniProt 
identifiers and taxonomic labels as well as Foldseek str uct ural search. (B) 

Link to data download. (C) Overview of a BFVD entry and its UniRef 
members. (D) Interactive str uct ure visualization. (E) Taxonomic 
distribution of UniRef cluster members. (F) BFVD entries similar to the 
current entry, as determined by a Foldseek all-vs.-all search. Str uct ures 
can be superposed to the current entry using TM-align ( 34 ) by clicking on 
the str uct ure visualization (left) or sent to the Foldseek w ebserv er f or 
search against various str uct ure databases. 
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y three attributes: their lengths, the number of homologs
n their structure-prediction MSAs, and their pLDDT scores.

e found that singleton structures were shorter than non-
ingleton ones (median and average number of residues: 75
nd 99, compared to 202 and 307.9). Focusing on the short-
st structures ( ≤70 residues), we found that 89.3% of them
ere singletons. Unlike longer structures, only 2.2% of the

hortest structures exhibited low confidence scores (pLDDT <

0). This is consistent with a previous report of high pLDDTs
n sequences shorter than 100 residues ( 43 ). Singleton pro-
ein structures also tended to have shallower MSAs, with an
verage of 305 homologs (median: 32), while non-singleton
rotein structures had an average of 1255 (median: 198). Put
ogether, the high abundance of structural singletons in BFVD
s likely driven by the short length and the limited number of
omologs of singleton proteins. 
A web server to explore BFVD 

Building on top of our previously released web server for the
AFDB clusters ( 14 ), we set up a web server at bfvd.foldseek.
com to allow exploring the BFVD structures in the context of
the over three million UniRef sequences they represent (Fig-
ure 2 ). For each BFVD structure, the web server can display
its 3D model, inform about its prediction quality, list the en-
tries in its UniRef30 cluster, present its associated taxonomic
labels (and host, where available), and indicate whether it is a
BFVD structural singleton or not. In addition, we queried the
BFVD structures against themselves using Foldseek search , al-
lowing the web server to link from each BFVD structure to
all structurally similar BFVD entries. Owing to the integra-
tion of these various annotations, the web server enables users
to query BFVD by providing either a UniProt accession, or a
taxonomic label, or a protein structure. If a structure is pro-
vided as query, the web server will search the BFVD struc-
tures using Foldseek. As part of this study, BFVD was also
added as a reference database to the Foldseek webserver at
search.foldseek.com . 

BFVD’s structural novelty compared to existing 

resources 

To assess the novelty of BFVD, we used Foldseek to compare
its structures to those of two major resources: AFDB50, a clus-
tered version of the AFDB, consisting of 52 million cluster rep-
resentatives, and the 100% sequence identity clustered Pro-
tein Data Bank (PDB100) with 279 193 entries (Figure 3 A).
We found that ca. 15% of the structures, all singletons, were
unique to BFVD, matching neither AFDB50, nor PDB100. An
additional 10%, mostly singletons, matched only one of these
databases. Furthermore, applying a cutoff on the quality of
the match (TM score ≥ 0.5) revealed that only 38% of the
BFVD structures matched any of the two databases. We then
evaluated BFVD’s residue-level similarity to these databases
by retrieving the alignment LDDT values computed by Fold-
seek for each match (Figure 3 B). We found that ca. 39% and
60% of the BFVD residues could not be aligned to AFDB50
and to PDB100, respectively. Additional fractions of ca. 6%
and 5% could be matched to these databases only with a poor
score (LDDT < 0.25). These results indicate that BFVD offers
a unique opportunity to explore viral diversity that existing
databases do not capture. 

Recently, 67 715 protein structure predictions from eukary-
otic viruses were made available in Nomburg24. To delineate
the structural variation of BFVD and Nomburg24, we applied
Foldseek cluster to the joint set of their structures. This re-
sulted in 32 755 non-singleton clusters, consisting of 218 914
structures, and in 200 043 singleton clusters (8913 from Nom-
burg24 and 191 130 from BFVD) (Figure 3 C). Considering
each of these 232 798 clusters as a putative structural class,
we found that BFVD covered about 96% of all classes by hav-
ing a structure in nearly all (97%) non-singleton clusters and
producing the most singletons. In contrast, Nomburg24 cov-
ered only 8% of all classes by having a structure in 31% of
all non-singleton clusters and producing substantially fewer
singletons. 

Case study: BFVD for studying bacteriophage 

proteins 

To demonstrate BFVD’s utility, we repeated and extended
a part of a recent study by Say et al. ( 15 ) that annotated

https://bfvd.foldseek.com
https://search.foldseek.com
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Figure 3. BFVD compared to other protein str uct ure repositories. (A, B) Foldseek comparison of BFVD to AFDB50 and PDB100 re v eals its uniqueness. 
(A) Match fractions are presented separately by a dashed line for BFVD singletons (ca. 55% of its str uct ures) and non-singletons (45%). Ca. 15% of 
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putative bacteriophages within metagenomically assembled
contigs from wastewater. Say et al. developed a pipeline for
enhanced annotations by integrating structural information
from the AFDB with sequence data. Here, we applied the steps
of their pipeline to one of the samples from their study: the
Granulated Activated Carbon sample 6 (GAC6). In addition
to using the AFDB, we included BFVD and Nomburg24 as ref-
erence databases for structural similarity search (Figure 3 D).
Like Say et al., we found that the sequence-similarity based
tool Bakta ( 39 ) matched on average 8% of the putative bac-
teriophage proteins on each contig with non-hypothetical la-
bels, considering the rest as Bakta-hypothetical. As in their
study, Foldseek with the AFDB as reference found on aver-
age a structural match for 51% of the proteins in the Bakta-
hypothetical fraction. By using BFVD, we could find structural
matches for a comparable average of 45%, despite the tremen-
dous size difference between the AFDB and BFVD. However,
combining the search results against the AFDB and BFVD only
marginally increased the fractions of matched structures. This
suggests that the AFDB likely includes some BFVD bacterio-
phage structures indirectly, through prophages embedded in
bacterial genomes covered by the AFDB. Compared to the
AFDB and BFVD, Nomburg24 matched lower fractions of the
Bakta-hypothetical proteins, likely due to its focus on eukary-
otic viruses. 

Discussion 

We presented BFVD, a database of 351k predicted protein
structures from the viral fraction of UniRef30 and we im-
proved over a third of its predictions by integrating 99 million
homologs identified through a petabase-scale sequence search.
When clustering its structures, we found that BFVD had a high
prevalence of singletons (55%), compared to AFDB50 (25%
of all structures) ( 14 ). Investigating possible reasons, we found
that singletons tend to be structures predicted from shorter
proteins with fewer homologs, compared to non-singletons.
Singletons should thus be treated with caution as they may not 
represent valid structural classes, but rather the result of poor 
structure prediction due to shallow MSAs or the presence of 
disordered regions. We then showed that BFVD is unique and 

substantially different from the AFDB and the PDB as well as 
Nomburg24. BFVD is more comprehensive than Nomburg24,
as revealed by the analysis of their joint clustering and by their 
utility for matching bacteriophage proteins. In this bacterio- 
phage case study, BFVD achieved comparable performance to 

the AFDB, effectively replacing the need for its 214 million 

entries with only 351k structures. This highlights the value of 
BFVD for virus-specific studies, offering a compact but com- 
prehensive resource, tailored to their needs. Moreover, since 
the entries in BFVD originate from UniProt, users can easily 
augment them with UniProt’s taxonomic and functional an- 
notations to enhance the study of viral biology. BFVD’s struc- 
tures can be used with current tools like Foldseek and its web- 
server, in BFVD’s designated web server, as well as newly de- 
veloped ones, like the multiple structure aligner FoldMason 

( 44 ) to shed new light on viral function and evolution. Look- 
ing ahead, we aim to expand BFVD by predicting viral mul- 
timer structures, taking advantage of their compact genome 
size, and making them searchable using Foldseek-Multimer 
( 45 ). 

Data availability 

All metadata, predicted structures (available as a tar file 
of PDBs), as well as the Foldcomp ( 46 ) and Foldseek 

databases, can be freely downloaded from bfvd.steineggerlab. 
workers.dev . Analysis scripts are available at github.com/ 
steineggerlab/bfvd-analysis . The webserver code is avail- 
able at github.com/ steineggerlab/ afdb- clusters- web/ tree/ bfvd .
Source Code and Data have been archived in Zenodo at https: 
// doi.org/ 10.5281/ zenodo.13992244 and https:// doi.org/ 10. 
5281/zenodo.13993144 , respectively. 

https://bfvd.steineggerlab.workers.dev
https://github.com/steineggerlab/bfvd-analysis
https://github.com/steineggerlab/afdb-clusters-web/tree/bfvd
https://doi.org/10.5281/zenodo.13992244
https://doi.org/10.5281/zenodo.13993145
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upplementary data 

upplementary Data are available at NAR Online. 

 c kno wledg ements 

e thank Artem Babaian for helping with the search against
ogan. We thank Jaebeom Kim for assisting with formatting
FVD’s taxonomic information for the Sankey plot. We thank
oe Grove, Uladzislau Litvin and Taylor Reiter for their com-
ents on the draft and preprint. We thank Paul Moody for
ringing to our attention an issue with the initial BFVD re-
ease. 

unding 

.S. acknowledges support by the National Research
oundation of Korea [2020M3-A9G7-103933, 2021-R1C1-
102065, 2021-M3A9-I4021220, RS-2024-00396026];
amsung DS research fund; Creative-Pioneering Researchers
rogram and AI-Bio Research Grant through Seoul National
niversity; M.M. acknowledges support from the National
esearch Foundation of Korea [RS-2023-00250470]; com-
uting resources were provided by the University of Toronto
loud Research Lab @ The Donnelly, powered by AWS.
unding for open access charge: NRF; Seoul National
niversity. 

onflict of interest statement 

.S. acknowledges outside interest in Stylus Medicine. 

eferences 

1. Feschotte, C. and Gilbert, C. (2012) Endogenous viruses: insights 
into viral evolution and impact on host biology. Nat. Rev. Genet., 
13 , 283–296.

2. Kuchibhatla, D.B. , Sherman, W.A. , Chung, B.Y. , Cook, S. , 
Schneider, G. , Eisenhaber, B. and Karlin, D.G. (2014) Powerful 
sequence similarity search methods and in-depth manual analyses 
can identify remote homologs in many apparently “orphan” viral 
proteins. J. V irol. , 88 , 10–20.

3. Terzian, P. , Olo Ndela, E. , Galiez, C. , Lossouarn, J. , Pérez Bucio, R.E. , 
Mom, R. , Toussaint, A. , Petit, M.-A. and Enault, F. (2021) PHROG: 
families of prokaryotic virus proteins clustered using remote 
homology. NAR: Genomics Bioinf. , 3 , lqab067. 

4. Illergård, K. , Ardell, D.H. and Elofsson, A. (2009) Structure is three 
to ten times more conserved than sequence—a study of structural 
response in protein cores. Proteins: Struct., Funct., Bioinf., 77 , 
499–508.

5. Abrescia, N.G. , Bamford, D.H. , Grimes, J.M. and Stuart, D.I. (2012) 
Structure unifies the viral universe. Annu. Rev. Biochem., 81 , 
795–822.

6. Bamford, D.H. , Grimes, J.M. and Stuart, D.I. (2005) What does 
structure tell us about virus evolution?. Curr. Opin. Struct. Biol., 
15 , 655–663.

7. Jumper, J. , Evans, R. , Pritzel, A. , Green, T. , Figurnov, M. , 
Ronneberger, O. , Tunyasuvunakool, K. , Bates, R. , Žídek, A. , 
Potapenko, A. , et al. 2021) Highly accurate protein structure 
prediction with AlphaFold. Nature , 596 , 583–589.

8. Lin, Z. , Akin, H. , Rao, R. , Hie, B. , Zhu, Z. , Lu, W. , Smetanin, N. , 
Verkuil, R. , Kabeli, O. , Shmueli, Y. , et al. 2023) Evolutionary-scale 
prediction of atomic-level protein structure with a language model.
Science , 379 , 1123–1130.

9. Baek, M. , DiMaio, F. , Anishchenko, I. , Dauparas, J. , Ovchinnikov, S. , 
Lee, G.R. , Wang, J. , Cong, Q. , Kinch, L.N. , Schaeffer, R.D. , et al. 
2021) Accurate prediction of protein structures and interactions 
using a three-track neural network. Science , 373 , 871–876.

10. Mirdita, M. , Schütze, K. , Moriwaki, Y. , Heo, L. , Ovchinnikov, S. and 
Steinegger,M. (2022) ColabFold: making protein folding accessible
to all. Nat. Methods , 19 , 679–682.

11. Varadi, M. , Anyango, S. , Deshpande, M. , Nair, S. , Natassia, C. , 
Yordanova, G. , Yuan, D. , Stroe, O. , Wood, G. , Laydon, A. , et al. 2022)
AlphaFold Protein Structure Database: massively expanding the 
structural coverage of protein-sequence space with high-accuracy 
models. Nucleic Acids Res. , 50 , D439–D444. 

12. Varadi, M. , Bertoni, D. , Magana, P. , Paramval, U. , Pidruchna, I. , 
Radhakrishnan, M. , Tsenkov, M. , Nair, S. , Mirdita, M. , Yeo, J. , et al. 
2024) AlphaFold Protein Structure Database in 2024: providing 
structure coverage for over 214 million protein sequences. Nucleic 
Acids Res., 52 , D368–D375.

13. Akdel, M. , Pires, D.E. , Pardo, E.P. , Jänes, J. , Zalevsky, A.O. , 
Mészáros, B. , Bryant, P. , Good, L.L. , Laskowski, R.A. , Pozzati, G. , 
et al. 2022) A structural biology community assessment of 
AlphaFold2 applications. Nat. Struct. Mol. Biol., 29 , 1056–1067.

14. Barrio-Hernandez, I. , Yeo, J. , Jänes, J. , Mirdita, M. , Gilchrist, C.L. , 
Wein, T. , Varadi, M. , Velankar, S. , Beltrao, P. and Steinegger, M. 
(2023) Clustering predicted structures at the scale of the known 
protein universe. Nature , 622 , 637–645.

15. Say, H. , Joris, B.R. , Giguere, D. and Gloor, G.B. (2023) Annotating 
metagenomically assembled bacteriophage from a unique 
ecological system using protein structure prediction and structure 
homology search. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2023.04.19.537516 , 21 April 2023, 
preprint: not peer-reviewed.

16. Boys, I.N. , Johnson, A.G. , Quinlan, M.R. , Kranzusch, P.J. and 
Elde,N.C. (2023) Structural homology screens reveal host-derived 
poxvirus protein families impacting inflammasome activity. Cell 
Rep., 42 , 112878.

17. Mifsud, J.C. , Lytras, S. , Oliver, M.R. , Toon, K. , Costa, V.A. , 
Holmes, E.C. and Grove, J. (2024) Mapping glycoprotein structure 
reveals Flaviviridae evolutionary history. Nature , 633 , 695–703.

18. Sabsay,K.R. and Te Velthuis,A.J. (2024) Using structure prediction 
of negative sense RNA virus nucleoproteins to assess evolutionary 
relationships. V irus Evol. , 10 , veae058. 

19. Soh, T.K. , Ognibene, S. , Sanders, S. , Kaufer, B.B. and Bosse, J.B. 
(2024) HerpesFolds: A proteome-wide structural systems 
approach reveals insights into protein families and activities of all 
nine human herpesviruses. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2024.07.16.603793 , 01 October 2024, 
preprint: not peer-reviewed.

20. Nomburg, J. , Doherty, E.E. , Price, N. , Bellieny-Rabelo, D. , Zhu, Y.K. 
and Doudna,J.A. (2024) Birth of protein folds and functions in the
virome. Nature , 633 , 710–717.

21. De Castro, E. , Hulo, C. , Masson, P. , Auchincloss, A. , Bridge, A. and 
Le Mercier,P. (2024) ViralZone 2024 provides higher-resolution 
images and advanced virus-specific resources. Nucleic Acids Res., 
52 , D817–D821.

22. UniProt Consortium (2023) UniProt: the Universal Protein 
Knowledgebase in 2023. Nucleic Acids Res. , 51 , D523–D531. 

23. Suzek, B.E. , Wang, Y. , Huang, H. , McGarvey, P.B. , Wu, C.H. and 
UniProt Consortium (2015) UniRef clusters: a comprehensive and 
scalable alternative for improving sequence similarity searches. 
Bioinformatics , 31 , 926–932.

24. Mirdita, M. , Von Den Driesch, L. , Galiez, C. , Martin, M.J. , Söding, J. 
and Steinegger,M. (2017) Uniclust databases of clustered and 
deeply annotated protein sequences and alignments. Nucleic Acids 
Res., 45 , D170–D176.

25. Chikhi, R. , Raffestin, B. , Korobeynikov, A. , Edgar, R.C. and 
Babaian,A. (2024) Logan: Planetary-Scale Genome Assembly 
Surveys Life’s Diversity. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2024.07.30.605881 , 31 July 2024, 
preprint: not peer-reviewed.

26. Sayers, E.W. , Bolton, E.E. , Brister, J.R. , Canese, K. , Chan, J. , 
Comeau, D.C. , Connor, R. , Funk, K. , Kelly, C. , Kim, S. , et al. 2022) 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1119#supplementary-data
https://doi.org/10.1101/2023.04.19.537516
https://doi.org/10.1101/2024.07.16.603793
https://doi.org/10.1101/2024.07.30.605881


8 Nucleic Acids Research , 2024 

38. Wick, R.R. and Holt, K.E. (2021) Benchmarking of long-read 
assemblers for prokaryote whole genome sequencing. 
F1000Research , 8 , 2138.

39. Schwengers, O. , Jelonek, L. , Dieckmann, M.A. , Beyvers, S. , Blom, J. 
and Goesmann,A. (2021) Bakta: rapid and standardized 
annotation of bacterial genomes via alignment-free sequence 
identification. Microb. Genomics , 7 , 000685.

40. Bai, Z. , Zhang, Y.-z. , Miyano, S. , Yamaguchi, R. , Fujimoto, K. , 
Uematsu, S. and Imoto, S. (2022) Identification of bacteriophage 
genome sequences with representation learning. Bioinformatics , 
38 , 4264–4270.

41. Lee, S. , Kim, G. , Levy Karin, E. , Mirdita, M. , Park, S. , Chikhi, R. , 
Babaian, A. , Kryshtafovych, A. and Steinegger, M. (2024) Petascale 
Homology Search for Structure Prediction. Cold Spring Harbor 
Perspect. Biol., 16 , a041465.

42. Katz, K. , Shutov, O. , Lapoint, R. , Kimelman, M. , Brister, J.R. and 
O’Sullivan,C. (2022) The Sequence Read Archive: a decade more 
of explosive growth. Nucleic Acids Res. , 50 , D387–D390. 

43. Monzon, V. , Haft, D.H. and Bateman, A. (2022) Folding the 
unfoldable: using AlphaFold to explore spurious proteins. 
Bioinform. Adv., 2 , vbab043.

44. Gilchrist, C.L. , Mirdita, M. and Steinegger, M. (2024) Multiple 
Protein Structure Alignment at Scale with FoldMason. bioRxiv 
doi: https:// doi.org/ 10.1101/ 2024.08.01.606130 , 27 Aug 2024, 
preprint: not peer-reviewed.

45. Kim, W. , Mirdita, M. , Levy Karin, E. , Gilchrist, C.L. , Schweke, H. , 
Söding, J. , Levy, E.D. and Steinegger, M. (2024) Rapid and Sensitive 
Protein Complex Alignment with Foldseek-Multimer. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2024.04.14.589414 , 28 October 2024, 
preprint: not peer reviewed.

46. Kim, H. , Mirdita, M. and Steinegger, M. (2023) Foldcomp: a library 
and format for compressing and indexing large protein structure 
sets. Bioinformatics , 39 , btad153.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/na
Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res. , 50 , D20–D26. 

27. Breitwieser,F .P . and Salzberg,S.L. (2020) Pavian: interactive 
analysis of metagenomics data for microbiome studies and 
pathogen identification. Bioinformatics , 36 , 1303–1304.

28. Steinegger, M. and Söding, J. (2017) MMseqs2 enables sensitive 
protein sequence searching for the analysis of massive data sets. 
Nat. Biotechnol., 35 , 1026–1028.

29. Buchfink, B. , Reuter, K. and Drost, H.-G. (2021) Sensitive protein 
alignments at tree-of-life scale using DIAMOND. Nat. Methods , 
18 , 366–368.

30. Steinegger, M. and Söding, J. (2018) Clustering huge protein 
sequence sets in linear time. Nat. Commun., 9 , 2542.

31. Kim, G. , Lee, S. , Levy Karin, E. , Kim, H. , Moriwaki, Y. , 
Ovchinnikov, S. , Steinegger, M. and Mirdita, M. (2024) Easy and 
accurate protein structure prediction using ColabFold. Nat. 
Protoc. , 1–23. 

32. Van Kempen, M. , Kim, S.S. , Tumescheit, C. , Mirdita, M. , Lee, J. , 
Gilchrist, C.L. , Söding, J. and Steinegger, M. (2024) Fast and 
accurate protein structure search with Foldseek. Nat. Biotechnol., 
42 , 243–246.

33. Berman, H.M. , Westbrook, J. , Feng, Z. , Gilliland, G. , Bhat, T.N. , 
Weissig, H. , Shindyalov, I.N. and Bourne, P.E. (2000) The protein 
data bank. Nucleic Acids Res. , 28 , 235–242. 

34. Zhang, Y. and Skolnick, J. (2005) TM-align: a protein structure 
alignment algorithm based on the TM-score. Nucleic Acids Res., 
33 , 2302–2309.

35. De Coster, W. , D’hert, S. , Schultz, D.T. , Cruts, M. and Van 
Broeckhoven,C. (2018) NanoPack: visualizing and processing 
long-read sequencing data. Bioinformatics , 34 , 2666–2669.

36. Kolmogorov, M. , Yuan, J. , Lin, Y. and Pevzner, P.A. (2019) Assembly 
of long, error-prone reads using repeat graphs. Nat. Biotechnol., 
37 , 540–546.

37. Li,H. (2018) Minimap2: pairwise alignment for nucleotide 
sequences. Bioinformatics , 34 , 3094–3100.
Received: September 21, 2024. Revised: October 22, 2024. Editorial Decision: October 23, 2024. Accepted: October 28, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

r/gkae1119/7906834 by Institut Pasteur -  C
eR

IS user on 20 D
ecem

ber 2024

https://doi.org/10.1101/2024.08.01.606130
https://doi.org/10.1101/2024.04.14.589414

	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

