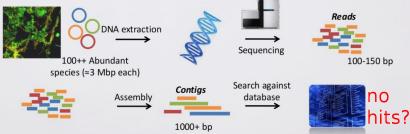
Metagenome assembly methods

Rayan Chikhi


CNRS, Univ. Lille, France

CGSI, July 30th 2018

Metagenomic assembly

Reconstruct genomes of species, possibly even strains, from short read sequencing data of an environment

https://fr.sideshare.net/MadsAlbertsen/20131202-mads-albertsen-extracting-genomes-from-metagenomes

Challenges

- 1. closely related strains
- 2. uneven depths, & low depths
- 3. inter-species repeats
- 4. size of datasets
- 5. lack of long reads

(adapted from A. Korobeynikov's talk)

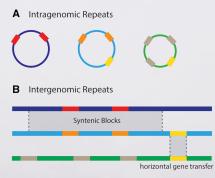


Fig: Olsen et al, 2017

What comes after assembly

Contigs binning

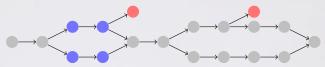
- CONCOCT
- MetaBAT
- MaxBin
- MetaWatt

Taxonomic identification

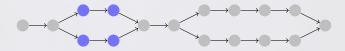
- PhyloPythiaS
- Kraken
- ProPhyle
- Centrifuge

See anvi'o pipeline

Assembly software


- IDBA-UD
- metaSPAdes
- MEGAHIT
- Minia-pipeline
- Ray-meta
- SOAPdenovo2
- metaVelvet/-SL
- Omega
- InteMAP
- Meraga
- Velour
- A*

[Nurk et al, Genome Res., 2017]

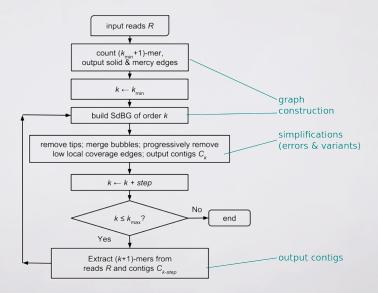

[Li et al, Methods, 2016]

How a metagenome assembler generally works

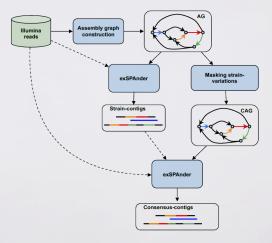
1) de Bruijn graph construction

2) Likely sequencing errors are removed.

3) Variations (e.g. SNPs, similar repetitions) are removed.


→ Collapses strains

4) Simple paths (i.e. contigs) are returned.

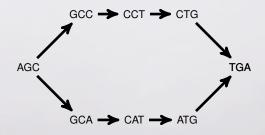


5) Extra steps: repeat-resolving, scaffolding

MEGAHIT < v1.0

metaSPAdes

the Minia pipeline


de Bruijn graphs

A **de Bruijn** graph for a fixed integer *k*:

- 1. **Nodes** = all *k*-mers in the reads
- 2. **Edges** = all exact overlaps of length exactly (k 1) between *k*-mers

AGCCTGA AGCATGA

dBG, *k* = 3:

de Bruijn graphs

A **de Bruijn** graph for a fixed integer *k*:

- 1. **Nodes** = all k-mers in the reads.
- 2. **Edges** = all exact overlaps of length exactly (k 1) between *k*-mers

ACTG CTGC TGCT GCTG CTGA TGAT dBG, k = 3:

Compacted de Bruijn graph

Compacted de Bruijn graph:

Each non-branching path becomes a single node (unitig).

- no loss of information
- less space

Downside: less easy to update

Large metagenome graph

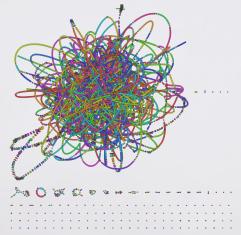
Source: Bandage wiki

Large metagenome graph (zoom)

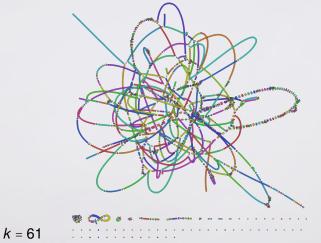
Bandage - /media/ryan/Data/Bandage.demo/07_NW1_metagenome/NW1_LastGraph _ D X					
File Tools View Help					
De Bruijn graph information	Find nodes				
0 Nodes: 51,639	Node(s):				
Edges: 65,832 Total length: 18,712,634	Find node(s)				
Graph drawing					
Scope: Entire graph					
● Style: ● Single ○ Double					
O Draw graph					
Graph display					
• Zoom: 17.6%					
Uniform colour					
Node labels					
0 Custom Number					
Coverage Fort Text outline					
· · · · · · · · · · · · · · · · · · ·	e				

Source: Bandage wiki

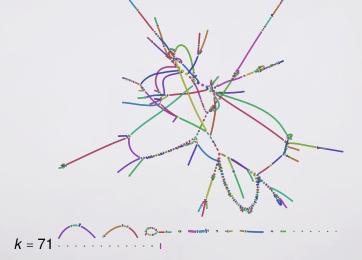
Under the hood of metagenome assemblers

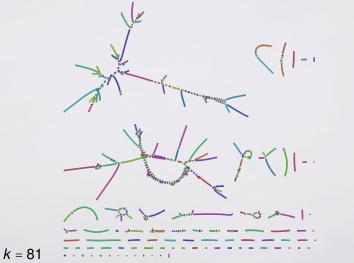


Under the hood of metagenome assemblers



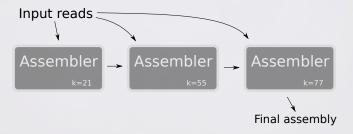
Multi-k, variant/error removal, low-abundance rescue


Salmonella genome, Velvet assembly, 100 bp Illumina reads. k = 51


Salmonella genome, Velvet assembly, 100 bp Illumina reads.

Salmonella genome, Velvet assembly, 100 bp Illumina reads.

Salmonella genome, Velvet assembly, 100 bp Illumina reads.


Salmonella genome, Velvet assembly, 100 bp Illumina reads.

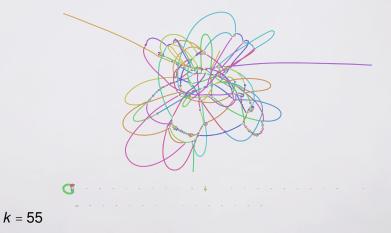
がそう (アマー)-1---1--1--1.

k = 91

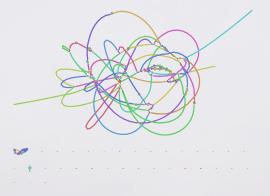
Fig: https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

Multi-k

Introduced by [Peng et al, RECOMB 2010]


Visualization of multi-k graphs

Salmonella genome, SPAdes assembly, MiSeq reads.


Visualization of multi-k graphs

Salmonella genome, SPAdes assembly, MiSeq reads.

Visualization of multi-k graphs

Salmonella genome, SPAdes assembly, MiSeq reads.

k = 99

→ Still a single component, less repeat-induced complexity

Why is MEGAHIT so fast

- In-memory read indexing, implicit k-mer counting
- succinct DBG, carefully engineered construction

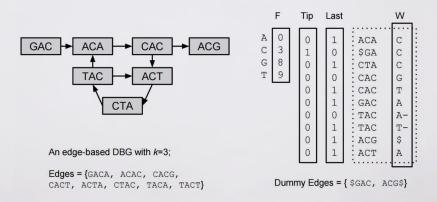


Fig: Li et al, 2016

Graph simplifications (here, SPAdes-inspired)

Tip removal:

 $len_{tip} \leq 3.5k$ or $len_{tip} \leq 10k$ $2cov_{tip} \leq cov_{neighbors}$

Bulge removal:

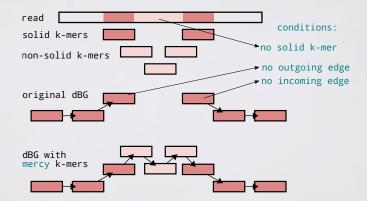
lenbulge ≤ max(3k, 100)
covbulge ≤ 1.1covaltpath
lenaltpath = lenbulge ± delta
delta = max(0.1lenbulge, 3)

Erroneous connection removal:

 $len_{EC} \leq 10k$ $4cov_{EC} \leq cov_{neighbors}$

Dealing with a flood of erroneous *k*-mers

... and keeping low-coverage, good k-mers.

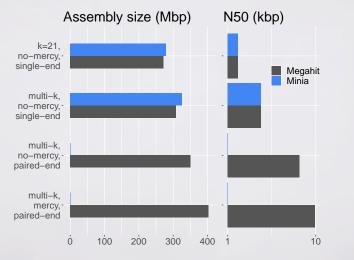

The MEGAHIT way: abundance cut-off at 2, mercy k-mers

The SPAdes way: abundance cut-off at 1, pre-simplifications prior to graph construction

Alternatives:

- stand-alone fixed-memory tip clipping software @ github.com/Malfoy/BTRIM
- stand-alone mercy k-mers module @ github.com/GATB/minia
- 3. pre-tip cleaning in minimizer-partitioned dBG construction spoilers: not very effective

Mercy k-mers

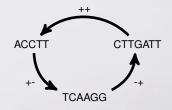

- Recovers filtered-out k-mers
- Useful for low-coverage strains.

Metagenomic scaffolding

Same as genome scaffolding, except: contigs may be placed in multiple scaffolds.

- no good stand-alone metagenomic scaffolder
- 'repeat-resolution' in metaSPADES
- 'local assembly' in MEGAHIT

Dissection of MEGAHIT modules

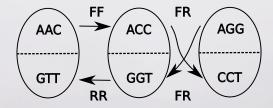


CAMI, medium dataset, PE data only

Graph formats

- FASTG
- GFA
- GFA2

Н	VN:Z:1.0				
S	11	ACCTT			
S	12	TCA	AGG		
S	13	CTT	GATT		
L	11	+	12	-	4M
L	12	-	13	+	5M
L	11	+	13	+	ЗМ
Ρ	14	11+	,12-	,13+	4M, 5M


Handling reverse complements

Due to strand ambiguity in sequencing:


In assembly, we always consider reads (and k-mers) are equal to their reverse complements.

E.g: AAA = TTT ATG = CAT

In de Bruijn graphs, nodes implicitly represent both strands. Lexicographically minimal *k*-mer is chosen as representative

Evaluation of assembly quality

Evaluation metrics

Same as regular assembly:

- N50, NG50
- Total size
- % of reads mapping correctly back to the assembly
- Number of predicted genes
- % of contigs matching some known references

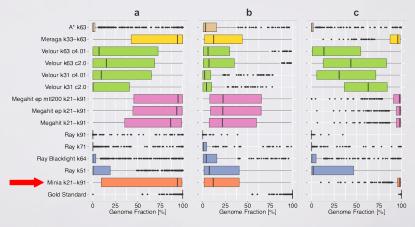
Metagenome-specific:

- metaQUAST
- CheckM, marker genes, [Parks et al, Genome Res. 2015]
- VALET [Olson et al, BFB 2017]

CAMI benchmark

- 3 artificial communities
 - Iow, medium, high complexity (600 genomes, 5x15 Gbp)
- 6 assemblers evaluated: MEGAHIT, Minia, Ray-meta, ...

Analysis | OPEN


Critical Assessment of Metagenome Interpretation–a benchmark of metagenomics software

Alexander Sczyrba 🎽, Peter Hofmann [...] Alice C McHardy 🏁

Nature Methods **14**, 1063–1071 (2017) doi:10.1038/nmeth.4458 Download Citation Received: 29 December 2016 Accepted: 25 August 2017 Published online: 02 October 2017

Quality of metagenome assembly

a: all genomes, b: genomes with ANI >= 95%, c: genomes with ANI < 95%

[Sczyrba, Nat Meth 2018]

Minia 6x less mem than MEGAHIT, as fast. MetaSPAdes: dataset too large.

No assembler could reconstruct close strains (ongoing work).

Mosaic DNANexus Challenge 2018

Focus on strains assembly

Evaluation metrics:

- Genome Fraction
- misassemblies

Mosaic DNANexus Challenge 2018

Focus on strains assembly		Evaluation metrics: Genome Fraction misassemblies 		
Minia's entry:				
Method	N50	Genome Fraction	# misassemblies	
Unitigs (BCALM)	0.5 Kbp	95.3%	23	
Minia-pipeline only tip clipping	1.3 Kbp	90.8%	286	
Minia-pipeline with all simplifications	7.1 Kbp	84.1%	1998	

 \rightarrow **Evaluating** metagenome assemblies is hard

Conclusion

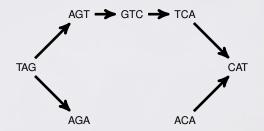
- Metagenome assembly is a hard problem
- Due to strains & low-abundant species, mostly
- Strains: trade-off between contiguity, and genome fraction/misassemblies. Questions on assemblies ranking.
- So far, limited availability of: long reads, Hi-C, 10x Genomics (?)

References:

- https://github.com/GATB/minia-pipeline
- CAMI A Benchmark of Metagenomics Software, 2017
- MEGAHIT & metaSPAdes articles

Acknowledgments: Sergey Nurk, Chris Quince, Aaron Darling, Guillaume Rizk, Claire Lemaitre, Pierre Peterlongo, Charles Deltel, Antoine Limasset, Paul Medvedev, Dominique Lavenier

Postdoc position in France, 2019


Exercise

k-mers:

- 1. ACA
- 2. AGA
- 3. AGT
- 4. CAT
- 5. GTC
- 6. TAG
- 7. TCA
- 8. TTG

Two strains of a short genome are in this dataset, please assemble them. ignore reverse-complements

Exercice: solution

- Discard TTG (connected to nothing)
- Observe a *k*-mer was missing (GAC)
- Two strains: TAGTCAT, TAGACAT