K-mer data structures

Rayan Chikhi
CNRS, Univ. Lille, France

CGSI - July 24, 2018

Baseline problem
In-memory representation of a large set of short k-mers:
e.g.
ACTGAT
GTATGC
ATTAAA

GAATTG

(Indirect) applications

Assembly

Error-correction of reads

Detection of similarity between sequences

Detection of distances between datasets

Alignment

Pseudoalignment / quasi-mapping

Detection of taxonomy

Indexing large collections of sequencing datasets

Quiality control

Detection of events (e.g. SNPs, indels, CNVs, alt. transcription)

Goals of this lecture

e Broad sweep of state of the art, with applications
e Refresher of basic CS elements

Au programme:

e Basic structures (Bloom Filters, CQF, Hashing, Perfect Hashing)
e k-mer data structures (SBT, BFT, dBG ds)
e Some reference-free applications

k-mers

Sequences of k consecutive letters, e.g. ACAG or TAGG for k=4

N.G. de Bruijn (1946), C Shanr\on (1948),
de Bruijn sequences ' information theory 2

Framing the problem

Large set of k-mers : 10° - 10! elements

kin[11: 10%]

Problem statement:

Representation of a set
of k-mers:

ACTGAT

GTATGC

Problem statement:

Operat|0ns tO Support Representation of a set of
k-mers:
- Construction (from a disk stream) ACTGAT
- Membership (“is X in the set?”) CTATGC

lteration (enumerate all elements in the set)

. 10%- 10" elements
Extensions:

k: 11 - 500
- Associate value(s) to k-mers (e.g. abundance)

- Navigate the de Bruijn graph

Data structures

“In computer science, a data structure is a
particular way of organizing and storing data in a
computer so that it can be accessed and modified
efficiently.”

https://en.wikipedia.org/wiki/Data structure

“Data structures can implement one or more
particular abstract data types (ADT) [..]”

Problem statement:

Representation of a set
of k-mers:

ACTGAT

GTATGC

10 - 10" elements
k: 11 - 500
Operations:

- Construction
- Membership
- lteration

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Abstract_data_type

Abstract data type

“In computer science, an abstract data type (ADT) is a mathematical model for

data types [..], a class of objects whose logical behavior is defined by a set of
values and a set of operations”

“[..] analogous to an algebraic structure in mathematics. “(e.g. set, group, ring,
field, etc)

“a data structure implements one (or more) ADT(s)”

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Algebraic_structure

ADT examples

Queue
Priority queue

https://en.wikipedia.org/wiki/List_(abstract_data_type)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)#Multiset
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Multimap
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Priority_queue

Data structures examples

Array
Linked list
B-tree
Hash table
FM-index

Corresponding data structures

List -> array, linked list

Set -> B-tree, hash table

Multiset -> array, linked list

Map -> hash table

Multimap -> hash table of lists
Graph -> list of tuples, hash table
Stack -> array, linked list

Analogy

Building blocks (which are
ADTs Data structures also ADTs/data structures)

:

288
)
=]=]=)

v
o
I
o
o
-

.

(note the overlaps of functionalities)

k-mer ADTs and data structures

Building block ADT

1.
2.
3.

Set
Tree
Full-text index

k-mer ADT

SRS i

Set of k-mers

Dictionary of k-mer/values
De Bruijn Graph

Read index

Set of sets of k-mers
K-mer/abundance matrix

Corresponding data structures

1.
2.
3.

R o

Hash table, Bloom Filter, ..
Pointer-based or parenthesis tree
BWT, FM-Index, ..

Bloom Filter, hash table, CQF, ..
Hash table, MPHF

BOSS, Minia, FDBG, ..
FM-Index

SBT, Mantis, BFT, ..
MPHF+compressed matrix

Recent methods are combinations of building blocks

BOSS data structure: FM-index + bit arrays

Minia: Bloom Filter + hash table

Bloom Filter Tries: sort of Burst Tries + Bloom Filters
Sequence Bloom Trees: Bloom Filter + tree

Fully Dynamic De Bruijn Graphs: MPHF + tree
Static/Dynamic Bit Arrays: compressed bit arrays
SeqOthello: sort of MPHF

Mantis: Counting Quotient Filters

BIGSI: matrix of Bloom filters

Building blocks for k-mer set representations

Building block: Unsorted List

[GAGG, ACAT, CATC, ...]

- O(k) insertion
- O(nk) deletion
- O(nk) search

Building block: Sorted List

[ACAT, CATC, GAGG, ...]

- O(nk) insertion
- O(nk) deletion
- O(k log2(n)) search

Building block: Tries

Worst case

- O(k) insertion
- O(k) deletion
- O(k) search

Building Block: Bloom filter

Init a bit array
Take h hash functions

Insertion: put 1's at
positions given by hash
functions

Query: are there 1’s at
all positions given by
hash functions?

- O(hk) insertion
- (O(hk) deletion)
- O(hk) query

(h=1)

OuUTh WP = O

Bloom Filter
k-mers | hash values 1
0
o) | oA o
0,,
e | o :
G | s—— =
e
A
0
e s

Position

Building Block: Bloom filter

e Are the queries exact?
e Can it support iteration?

Space: m = 1.44n log2(g)
where ¢ is the false
positive rate

OuUTh WP = O

Bloom Filter
k-mers | hash values .
0
G| —— ¢
0
e | o :
@ | s—— 1
/'
s— | o
0
e s

Position

Building Block: Bloom Filter

e (Good for error-tolerant membership testing (e.g. initial filter)
e Easy to implement

e Can use off-the-shelf hash functions (but not std::hash)

unsigned int hash(unsigned int x) {
x = ((x > 16) ™ x) * 0x45d9f3b;
x = ((x > 16) ™ x) * 0x45d9f3b;
X = (x> 16) ™ x;

return x; }

e from pybloom import BloomFilter

Data structure: Sequence Bloom Trees

S,uS,uS,uS,
Leaf: Bloom Filter of a sequencing dataset
Internal nodes: Bit-wise union of children BF’s

SRR S,uS - Representation of sets of k-mer sets

- Approximate membership across all
datasets in O(hits) instead of O(datasets)

3 4 - No k-mer iteration
- Insertion/deletion of complete datasets
- Whole structure resides on disk

Application: fast sequence search in 1000’s of
RNA-seq experiments

Data structure: Bloom Filter Tries

+ +

aggctatgctca @ aggc |ctca|geee|gege

aggctgcattgt 2 / \
ctecattigataa # . '

£

t

gecetgeatigt S tatgctca w||||ttlgataa @||||(tgcallgl s||||caggaatc &
gegetatgetga s tgcatigt tatgetga s
a b

Principle: cut k-mers into chunks, insert in a
burst trie, Bloom Filters added for speed

- Representation of sets of k-mer sets

- Tailored to pan-genomes: a single k-mer

belongs to many sets
- Explicit dBG operations support

Application: indexing and
compression of pan-genomes

Data structure: Counting Quotient Filter

. SRS Hybrid between a compact
- CEIEE) e hash table and a Bloom
b(u) 0 B} 9 r Filter.
b(v) 1 * b(x) = location in the hash table Approximate membership
) * f(x) = tag stored in the hash table
3 Collisions in the hash table? - O(k) insertion
tT_-" 4 Linear probing. - (O(K) deletion)
5 - O(k) query
6

Pandley, Bender, Johnson, Patro, SIGMOD 2017

Building block

On average:

- O(k) insertion
- O(k) deletion
- O(k) search

Worst case:

- O(nk) everything

: Hash table

{ kate }

elements

0 N o a & WON KR O

hash function

hash table

Building block: Perfect hashing

e Smaller than a classical hash table

e Only needs to store the hash function and values, not the keys, because there
is no need to check for collisions

e Cannot test for membership, but can do key-value dictionary

a,b,c,d,e : hashable elements (e.q. strings, integers, etc..)

. : image [0;m] of hash function
——: hash function (e.g. indices of buckets in a hash table)

; ' . Minimal perfect
Classical hashing Perf(?occtdmgi?mg halslhing P

(no collisions, |image|=|input|)

a 0 a 0
\ a |1 \ a |1 a
b e |2 b C |2 [a]o
c 3 C e |s b c |1
d b,c|4 d b |4 C e |2
o . o s d b |3
d |s d (s e d |4

Building Block: Perfect hashing

Naive method to create a perfect hash function.

Let’s pick a random hash function and see if it's perfect.

How random? Fully random?

If so, would need to store this hash function somehow.

m = universe size, so m*log2(m) bits (with log2(m) = 32 typically) to store function

Need another type of function than fully random.

Source https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1004.pdf

Building Block: Universal hashing
A family of hash functions having the same desirable properties as random hash
functions:

e A randomized algorithm for constructing hash function over universe {1...m} is
universal if, for x and y fixed (x#y), Pr,(h(x) =h(y)) =1/m

This is exactly the probability of collision we would expect if the hash function was
truly random.

Universal hashing example

Universal hash function:
. . Pr.(h(x) =h(y)) <=1/m
Universe size: m "

ha,b (X)= ((ax+b) mod p) mod m (a,b randomly chosen mod p, a!=0, p prime)

iS universal

Proof: collision if ax+b = ay+b+t*m (mod p) € a = t*m*(x-y)"' (mod p)
With t taking values in [0; integer value of p/m]

p-1 choices for a ; (p-1)/m possible non-zero values for (t*'m*(x-y)")

Collision probability: ((p-1)/m)/(p-1) <= 1/m

Source: https://en.wikipedia.org/wiki/Universal_hashing

Building Block: Perfect hashing

Naive method to create a perfect hash function

e To hash n elements, just set m = an? with a>=2, run a randomized

algorithm:
o choose a random hash function from an universal collection
o check for collision
o If none, return the function.
o Otherwise, retry

e Willit run forever? No, only 2 tries are expected

Building Block: Perfect hashing of k-mers, wrap-up

e Recommended method for large dictionaries of kmers
e Only if one doesn’t need to test membership (keys are not stored)

e (Can store all distinct k-mers of human genome (around 2.5 billion) in ~3
bits/kmer, i.e. 1 GB.

Fast and scalable minimal perfect hashing for massive key sets

Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo (2017)

ADT: K-mer matrices

Sample 1
AAAGT 0
AACTG 20

Applications:

Clustering of metagenomes
Reference-free detection of events in
collections of transcriptomes and
genomes

more?

Sample 2 Sample 3
0 20
10 0

Usually represented as a flat disk file
or
Stored in memory using MPHF

Application: direct comparison of metagenomes

.
Gastrointestinal ¢
R 3
Oral PR
.

o ?‘3 B 1 Human Microbiome Project
BONWgR n=690 samples
ALY (32 billion reads)

0.5 day computation

3
o8
%.. Nasal
»

PC1 (18.73%)

all-vs-all dataset similarity estimation

k- tri :
mer matrix (Jaccard, Bray-Curtis)

ACGAG |2 |4 0

CGAGC |2 |1 9

GAGCT (0 (O 5

Benoit et al, Peerd 2016

ADT: de Bruijn graphs

e k-mer set, and also..
e lteration of neighbors in the dBG
e Implicit support for reverse-complements (bi-directed)

o et

GAT =3» ATT =3» TTA =3 TAC =P ACA =P CAA

Construction algorithms:
e BCALM2
e ABySS

Blog post: “Bi-Directed Graphs in BCALM 2”

Simpson et al, Genome Res 2009
Chikhi et al, RECOMB 2014

Data Structures for de Bruijn graphs

BOSS: FM-index over k-mers

Dbgfm: FM-index over unitigs

Minia: Bloom filter with hash table of false positives
Fully Dynamic DBG: MPHF with a tree for false positives

Applications:

e de novo assembly of genomes and
metagenomes

e Error-correction of 2nd and 3rd generation
sequencing data

e Reference-free variant detection

e Transcriptome quantification

e Pan-genome representation (colored de
Bruijn graph)

Application: Reference-free SNP detection

CTGA |—>f TGAC > GACC |—>{ ACCT

CTGT f—>{ TGTC —>{ GTCC f—{ TCCT

» Two paths of length k nodes:

* Provides two sequences of length 2k-1:
— CTGACCT
- CTGTCCT

CTGA

—

[GAC

—>>

GACC

> ACTG

CTGT

IGTT

GTTA

TTAC

TACC

Principle: detect SNPs using only the
dBG

Steps:
1. Construct dBG
2. Detect bubble motifs
3. Scan reads to compute coverage
per event
4. Generate .fa or .vcf results

Pros: no reference necessary, no read
mapping ambiguity

Cons: more resources-intensive, more
false positives

Reductions

“Difficulty” of

implementation
Set of
k-mers
Multiset of De Bruijn
k-mers graph

Set ofm

of k-mers

Set of\

multisets of

Conclusion

e k-mer data structures are pervasive in sequence bioinformatics

e Building blocks:
Hash tables
Perfect hash functions
Bloom filters
Trees
e More advanced k-mer ADTs and data structures:
o (Colored) de Bruijn graphs
o Set of sets of k-mers
o K-mer matrices
e Applications:
o Virtually all aspects of sequencing data analysis

e GATB library, www.gatb.fr

O O O O

http://www.gatb.fr

