
k-mer data structures
Rayan Chikhi

CNRS, Univ. Lille, France

CGSI - July 24, 2018



Baseline problem
In-memory representation of a large set of short k-mers:

e.g.

ACTGAT

GTATGC

ATTAAA

GAATTG

...



(Indirect) applications
● Assembly
● Error-correction of reads
● Detection of similarity between sequences
● Detection of distances between datasets
● Alignment
● Pseudoalignment / quasi-mapping
● Detection of taxonomy
● Indexing large collections of sequencing datasets
● Quality control
● Detection of events (e.g. SNPs, indels, CNVs, alt. transcription)
● ...



Goals of this lecture
● Broad sweep of state of the art, with applications
● Refresher of basic CS elements

Au programme:

● Basic structures (Bloom Filters, CQF, Hashing, Perfect Hashing)

● k-mer data structures (SBT, BFT, dBG ds)
● Some reference-free applications



k-mers
Sequences of k consecutive letters, e.g. ACAG or TAGG for k=4



Framing the problem

Large set of k-mers : 106 - 1011 elements

k in [11; 103]

Problem statement:

Representation of a set 
of k-mers:

ACTGAT

GTATGC

..



Operations to support

- Construction (from a disk stream)
- Membership (“is X in the set?”)
- Iteration (enumerate all elements in the set)
- ...

Extensions:

- Associate value(s) to k-mers (e.g. abundance)

- Navigate the de Bruijn graph

Problem statement:

Representation of a set of 
k-mers:

ACTGAT

GTATGC

..

106 - 1011  elements

k: 11 - 500

-



Data structures

“In computer science, a data structure is a 
particular way of organizing and storing data in a 
computer so that it can be accessed and modified 
efficiently.”

https://en.wikipedia.org/wiki/Data_structure

“Data structures can implement one or more 
particular abstract data types (ADT) [..]”

Problem statement:

Representation of a set 
of k-mers:

ACTGAT

GTATGC

..

106 - 1011  elements

k: 11 - 500

Operations:

- Construction
- Membership
- Iteration

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Abstract_data_type


Abstract data type
“In computer science, an abstract data type (ADT) is a mathematical model for 
data types [..], a class of objects whose logical behavior is defined by a set of 
values and a set of operations”

“[..] analogous to an algebraic structure in mathematics. “ (e.g. set, group, ring, 
field, etc)

“a data structure implements one (or more) ADT(s)”

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Algebraic_structure


ADT examples
● List
● Set
● Multiset
● Map
● Multimap
● Graph
● Stack
● Queue
● Priority queue

https://en.wikipedia.org/wiki/List_(abstract_data_type)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)#Multiset
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Multimap
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Priority_queue


Data structures examples

● Array
● Linked list
● B-tree
● Hash table
● FM-index



Corresponding data structures

● List -> array, linked list
● Set -> B-tree, hash table
● Multiset -> array, linked list
● Map -> hash table
● Multimap -> hash table of lists
● Graph -> list of tuples, hash table 
● Stack -> array, linked list



Analogy
Building blocks (which are 
also ADTs/data structures)Data structuresADTs

(note the overlaps of functionalities)



k-mer ADTs and data structures

k-mer ADT

1. Set of k-mers
2. Dictionary of k-mer/values
3. De Bruijn Graph
4. Read index
5. Set of sets of k-mers
6. K-mer/abundance matrix

Corresponding  data structures

1. Hash table, Bloom Filter, ..
2. Pointer-based  or parenthesis tree
3. BWT, FM-Index, ..

1. Bloom Filter, hash table, CQF, ..
2. Hash table, MPHF
3. BOSS, Minia, FDBG, ..
4. FM-Index
5. SBT, Mantis, BFT, ..
6. MPHF+compressed matrix

Building block ADT

1. Set
2. Tree
3. Full-text index



Recent methods are combinations of building blocks

● BOSS data structure: FM-index + bit arrays
● Minia: Bloom Filter + hash table
● Bloom Filter Tries: sort of Burst Tries + Bloom Filters
● Sequence Bloom Trees: Bloom Filter + tree
● Fully Dynamic De Bruijn Graphs: MPHF + tree
● Static/Dynamic Bit Arrays: compressed bit arrays
● SeqOthello: sort of MPHF 
● Mantis: Counting Quotient Filters
● BIGSI: matrix of Bloom filters
● ..



Building blocks for k-mer set representations



Building block: Unsorted List

- O(k) insertion
- O(nk) deletion
- O(nk) search

[ GAGG, ACAT, CATC, … ]



Building block: Sorted List

- O(nk) insertion
- O(nk) deletion
- O(k log2(n)) search

[ ACAT, CATC, GAGG,  … ]



Building block: Tries

Worst case

- O(k) insertion
- O(k) deletion
- O(k) search



Building Block: Bloom filter
Init a bit array
Take h hash functions

Insertion: put 1’s at 
positions given by hash 
functions

Query: are there 1’s at 
all positions given by 
hash functions?

- O(hk) insertion
- (O(hk) deletion)
- O(hk) query

(h=1)



Building Block: Bloom filter

● Are the queries exact?
● Can it support iteration?

Space: m = 1.44n log2(ε)
where ε is the false 
positive rate



Building Block: Bloom Filter
● Good for error-tolerant membership testing (e.g. initial filter)
● Easy to implement

● Can use off-the-shelf hash functions (but not std::hash)

unsigned int hash(unsigned int x) {

x = ((x >> 16) ^ x) * 0x45d9f3b; 

x = ((x >> 16) ^ x) * 0x45d9f3b;

x =  (x >> 16) ^ x; 

return x; }

● from pybloom import BloomFilter



Data structure: Sequence Bloom Trees

Leaf: Bloom Filter of a sequencing dataset
Internal nodes: Bit-wise union of children BF’s

- Representation  of sets of k-mer sets

- Approximate membership across all 
datasets in O(hits) instead of O(datasets)

- No k-mer iteration
- Insertion/deletion  of complete datasets
- Whole structure resides on disk

Solomon, Kingsford, Nat Biotech 2017
Sun, Harris, Chikhi, Medvedev, RECOMB 2017
Solomon, Kingsford, RECOMB 2017

Fig: https://www.sevenbridges.com/sequence-bloom-trees-principles/

Application: fast sequence search in 1000’s of 
RNA-seq experiments



Data structure: Bloom Filter Tries

Holley, Wittler, Stoye, WABI 2016

Fig:BFT article

Principle: cut k-mers into chunks, insert in a 
burst trie, Bloom Filters added for speed

- Representation  of sets of k-mer sets
- Tailored to pan-genomes: a single k-mer 

belongs to many sets
- Explicit dBG operations support

Application: indexing and 
compression of pan-genomes



Data structure: Counting Quotient Filter

Hybrid between a compact 
hash table and a Bloom 
Filter. 

Approximate membership

- O(k) insertion
- (O(k) deletion)
- O(k) query

Fig: P. Pandley, SIGMOD 2017
https://pdfs.semanticscholar.org/6bde/f4a86108309086de4071c9d28d97565a84a4.pdf

Pandley, Bender, Johnson, Patro, SIGMOD 2017



Building block: Hash table

On average:

- O(k) insertion
- O(k) deletion
- O(k) search

Worst case:

- O(nk) everything Fig: http://www.kriche.com.ar/root/programming/data%20structures%20&%20algorithms/hashTable.html



Building block: Perfect hashing
● Smaller than a classical hash table
● Only needs to store the hash function and values, not the keys, because there 

is no need to check for collisions
● Cannot test for membership, but can do key-value dictionary



Building Block: Perfect hashing
Naive method to create a perfect hash function.

Let’s pick a random hash function and see if it’s perfect.

How random? Fully random? 

If so, would need to store this hash function somehow.

m = universe size, so m*log2(m) bits (with log2(m) = 32 typically) to store function

Need another type of function than fully random.



Building Block: Universal hashing
A family of hash functions having the same desirable properties as random hash 
functions:

● A randomized algorithm for constructing hash function over universe {1...m} is 
universal if, for x and y fixed (x≠y), Prh( h(x) = h(y) )  ≤ 1/m

This is exactly the probability of collision we would expect if the hash function was 
truly random. 

Source https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1004.pdf



Universal hashing example
Universe size: m

ha,b (x)= ((ax+b) mod p) mod m           (a,b randomly chosen mod p, a!=0, p prime)

is universal

Source: https://en.wikipedia.org/wiki/Universal_hashing

Proof: collision if ax+b = ay+b+t*m (mod p) ⇔ a = t*m*(x-y)-1 (mod p)
With t taking values in [0; integer value of p/m]

p-1 choices for a ; (p-1)/m possible non-zero values for (t*m*(x-y)-1)

Collision probability: ((p-1)/m)/(p-1) <= 1/m

Universal hash function: 
Prh( h(x) = h(y) )  <= 1/m



Building Block: Perfect hashing
Naive method to create a perfect hash function

● To hash n elements, just set m = ṁn²  with ṁ>=2, run a randomized 
algorithm:

○ choose a random hash function from an universal collection
○ check for collision
○ If none, return the function.
○ Otherwise, retry

● Will it run forever? No, only 2 tries are expected



Building Block: Perfect hashing of k-mers, wrap-up
● Recommended method for large dictionaries of kmers
● Only if one doesn’t need to test membership (keys are not stored)

● Can store all distinct k-mers of human genome (around 2.5 billion) in ~3 
bits/kmer, i.e. 1 GB.

Fast and scalable minimal perfect hashing for massive key sets 

Antoine Limasset, Guillaume Rizk, Rayan Chikhi, Pierre Peterlongo (2017)



ADT: K-mer matrices

Benoit et al, PeerJ 2016
Audoux et al, Genome Biology 2018
Rahman et al, bioRxiv 2017

Sample 1 Sample 2 Sample 3

AAAGT 0 0 20

AACTG 20 10 0

... .. .. ..

Applications: 
● Clustering of metagenomes
● Reference-free  detection of events in 

collections of transcriptomes and 
genomes

● more?

Usually represented as a flat disk file
or
Stored in memory using MPHF



Application: direct comparison of metagenomes

Benoit et al, PeerJ 2016



ADT: de Bruijn graphs
● k-mer set, and also..
● Iteration of neighbors in the dBG
● Implicit support for reverse-complements (bi-directed)

Construction algorithms:
● BCALM 2
● ABySS

Blog post: “Bi-Directed Graphs in BCALM 2”

Simpson et al, Genome Res 2009
Chikhi et al, RECOMB 2014



Data Structures for de Bruijn graphs
● BOSS: FM-index over k-mers
● Dbgfm: FM-index over unitigs
● Minia:  Bloom filter with hash table of false positives
● Fully Dynamic DBG: MPHF with a tree for false positives
● ...

Applications: 
● de novo assembly of genomes and 

metagenomes
● Error-correction of 2nd and 3rd generation 

sequencing data
● Reference-free variant detection
● Transcriptome quantification
● Pan-genome representation  (colored de 

Bruijn graph)

Bowe, Onodera,  Sadakane, Shibuya, WABI 2012
Chikhi, Rizk, WABI 2012
Chikhi et al, RECOMB 2014
Boucher et al, DCC 2015
Crawford et al, Bioinformatics 2018



Application: Reference-free SNP detection

Iqbal et al, Nat Gen 2012
Uricaru et al, NAR 2015
Alipanahi et al, RECOMB-Seq 2018

Principle: detect SNPs using only the 
dBG

Steps:
1. Construct dBG
2. Detect bubble motifs
3. Scan reads to compute coverage 

per event
4. Generate .fa or .vcf results

Pros: no reference necessary, no read 
mapping ambiguity
Cons: more resources-intensive,  more 
false positives



Reductions

Set of 
k-mers

De Bruijn 
graph

Colored de 
Bruijn 
graph

Set of sets 
of k-mers

Set of 
multisets of 
k-mers

Multiset of 
k-mers

“Difficulty” of 
implementation



Conclusion
● k-mer data structures are pervasive in sequence bioinformatics
● Building blocks:

○ Hash tables
○ Perfect hash functions
○ Bloom filters
○ Trees

● More advanced k-mer ADTs and data structures:
○ (Colored) de Bruijn graphs
○ Set of sets of k-mers
○ K-mer matrices

● Applications:
○ Virtually all aspects of sequencing data analysis

● GATB library, www.gatb.fr

http://www.gatb.fr

