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Abstract

Summary: Genome wide association studies elucidate links between genotypes and phenotypes. Recent studies
point out the interest of conducting such experiments using k-mers as the base signal instead of single-nucleotide
polymorphisms. We propose a tool, kmdiff, that performs differential k-mer analyses on large sequencing cohorts
in an order of magnitude less time and memory than previously possible.

Availabilityand implementation: https://github.com/tlemane/kmdiff

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome wide association studies (GWAS) determine links be-
tween genotypes, i.e. genomic variants and phenotypes such as
diseases. GWAS are generally performed either by genotyping
known variants using micro-arrays or by mapping vast amount of
sequenced data to reference genomes. In both cases, the data are
biased and incomplete as genotypes are a predefined set of single-
nucleotide polymorphisms (SNPs), with respect to a particular ref-
erence genome. Parts of individual genomes from a population
which are absent from this reference, or which do not align to it,
are simply omitted. Recent approaches (Mehrab et al., 2021;
Rahman et al., 2018; Voichek and Weigel, 2020) propose to over-
come those limitations by directly comparing raw sequencing data
without resorting to a reference genome. Despite being of funda-
mental interest these tools are clearly under-exploited, likely be-
cause of important practical limitations: a high expertise required
for installing and running the tools and more importantly because
of prohibitive computational requirements even for only dozens
of individuals.

Here, we present kmdiff, a new tool that performs large
reference-free GWAS experiments using k-mers. kmdiff is based on
state-of-the-art statistical models described in HAWK (Rahman et al.,
2018), which detect k-mers with significantly different frequencies
between two cohorts, taking into account population stratification.
The main novelties offered by kmdiff are its usability (user-friendly
installation and usage) and its performance, being up to 16� faster
than HAWK and using 9� less RAM and nearly 3� less disk. These
features enable kmdiff to compare dozens of human whole-
genome sequencing experiments in a few hours using reasonable
hardware resources.

2 Methods

2.1 Kmdiff pipeline
For the statistical part, kmdiff follows HAWK both in terms of k-mer
detection and population stratification correction. Each k-mer is tested
for significant association with either cohort using a likelihood ratio
test, which assumes that k-mers are Poisson-distributed. To take into
account the population stratification and thus to compute corrected
P-values, a random sample of k-mers (<1/100th of total) are used to
infer a stratification using the Eigenstrat software (Patterson et al.,
2006; Price et al., 2006; Rahman et al., 2018). Finally, P-values are
adjusted for multiple tests (Salkind, 2006) using Bonferroni correction
(though Benjamini–Hochberg can also be used).

kmdiff deviates from HAWK in the k-mer counting part. HAWK
counts k-mers of each sample before loading and testing batches of
them using a hash table. The k-mer abundance tables are obtained
using a slightly modified version of Jellyfish (Marçais and
Kingsford, 2011) bundled with the tool. Instead, kmdiff constructs
a k-mer matrix, i.e. an abundance matrix with k-mers in rows and
samples in columns. For efficiency reasons and to limit drastically
the memory usage, this matrix is not represented as a whole but sub-
matrices are streamed in parallel using kmtricks (Lemane et al.,
2022). An overview of the procedure is shown in Figure 1.

2.2 Implementation
kmdiff is a well-documented and user-friendly command line tool
implemented in Cþþ. It extensively uses the kmtricks tools and
APIs for efficient k-mer matrix construction. It also supports Cþþ
plugins to easily prototyping new stream-friendly models while
keeping the pipeline efficiency. Sources and documentation are
available at https://github.com/tlemane/kmdiff.
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3 Results

We compare the performance of kmdiff with the state-of-the-art
tool HAWK and demonstrate the ability of kmdiff to be more scal-
able while producing an equivalent output. We present medium and
large-scale experiments adapted from Rahman et al. (2018), respect-
ively on bacterial and human data. Extended results, together with
the benchmark environment and resources description are available
as a supplement (see Supplementary Section S1).

We also compared the computational performances of kmdiff to
kmerGWAS (Voichek and Weigel, 2020), but not the quality of results,
as kmerGWAS uses a different statistical model which does not com-
pare two cohorts but instead considers phenotypes as continuous real
values. Because of the high memory usage of kmerGWAS, results are
limited to the bacterial dataset (see Supplementary Section S1.2).

3.1 Ampicillin resistance
This dataset consists of sequencing data from 241 strains of
Escherichia coli from Earle et al. (2016). Among them 189 are resist-
ant to ampicillin and 52 are sensitive. On this dataset, kmdiff is 6�
faster than HAWK and reduces memory and disk usage by 8� and
4.5�, respectively. The difference in memory usage is explained by
the use of kmtricks, a disk-based counting algorithm. For the disk
usage, the difference is due to the compressed representation of
counted k-mers. The k-mers found are exactly the same for both tools:
13196814 over-represented k-mers occur in cases, and 16804587 in
controls. After population stratification, due to stochasticity, results
differ: 4542 (for HAWK) and 4591 (for kmdiff) k-mers from controls
pass significance filters. The difference can be explained by imprecise
floating-point arithmetics and non-deterministic sub-sampling during
population stratification correction. Thus, some k-mers with P-values
close the significance threshold may not be found by both tools. In
this experiment, 98% of k-mers found by HAWK are also found by
kmdiff. The distribution of the significant P-values reported by both
two tools is available in the Supplementary Material.

3.2 Human cohorts
To illustrate the scalability of kmdiff, we compared it to HAWK on
several datasets of different sizes from the 1000 Genome project
(The 1000 Genomes Project Consortium, 2015). We used whole-
genome sequencing from two populations, TSI (Toscani in Italia)
and (Yoruba in Ibadan, Nigeria), to build benchmark datasets com-
posed of 20, 40 and 80 individuals. As shown in the Figure 2,
kmdiff offers a better scalability than HAWK being at least 13 times
faster while using significantly less memory and disk.

4 Conclusion

kmdiff enables differential k-mer analysis over large cohorts of
sequencing data. It provides results that are equivalent to the state-
of-the-art tool HAWK, but it is an order of magnitude more efficient.

It additionally has the advantage of being easy to install and use.
Finally, kmdiff is designed to allow simple addition of new
streaming-friendly models making future updates possible while

maintaining the pipeline efficiency.
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