# On the representation of de Bruijn Graphs

Rayan Chikhi

joint work with P. Medvedev, A. Limasset, S. Jackman, J. Simpson

Univ. Lille

ALEA 2016

# de Bruijn Graph

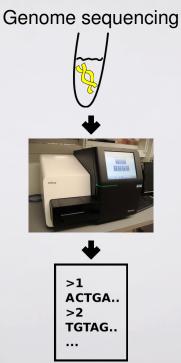
sequence: GATTACATTACAA k-mers: GAT (k=3) ATT TTA

Nodes: *k*-mers (words of length *k*) Edges: exact suffix-prefix overlaps of length k - 1

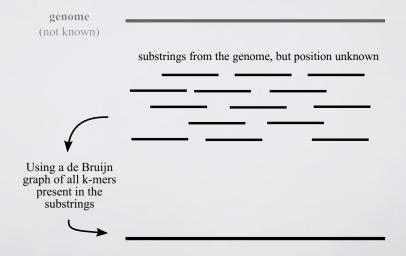


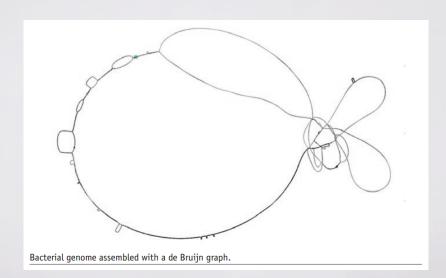
#### Usages:

- Bioinformatics
  - de novo assembly of sequencing data
- Distributed applications

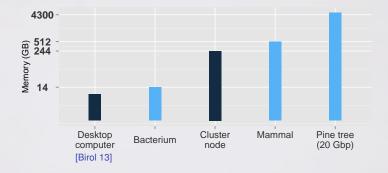


## Genome assembly

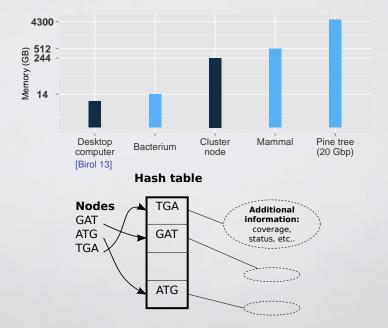




### dBGs require a lot of memory



### dBGs require a lot of memory



# How to encode the de Bruijn graph using as little space as possible?

nodes only:  $\{GAT, ATT, \ldots\}$ 

(human genome: k = 75,  $n = 3 \cdot 10^9$  k-mers)

- Explicit list:

 $2k \cdot n$  bits

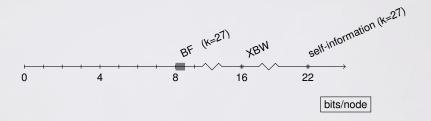
56 GB

- Self-information of *n* nodes: [Conway, Bromage 11]

$$\log_2\left(\binom{4^k}{n}\right)$$
 bits

44 GB

## **Recent techniques**



- Bloom filter of nodes (w/ tricks) [Chikhi, Rizk 12], [Salikhov et al. 13]
- XBW (Burrows-Wheeler for trees) variant

[Saliknov et al. 13] [Bowe et al. 12]

Why are they doing better?  $\rightarrow$  different types of data structures

#### Data structures

A **membership** data structure is a pair of algorithms (*const*, *contains\_node*), where:

 $data \leftarrow const(G)$ 

**contains\_node**(*data*, *kmer*) returns {true, false} whether kmer  $\in G$ 

A navigational data structure is (const, neighbors), where:

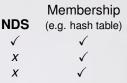
 $data \leftarrow const(G)$ 

neighbors(data, kmer) returns the neighbors of kmer in G

### Navigational data structures

**Traverse** dBG from known nodes Query **membership** of arbitrary nodes **Enumerate** nodes

NDS has undefined behavior if query node not present.





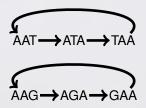
Recent techniques are NDS but not Membership DS

## Why a NDS "beats" the self-information

#### Consider this example NDS when k = 3

"For each node  $x = x_1 x_2 x_3$ , out-neighbor:  $x_2 x_3 x_1$ in-neighbor:  $x_3 x_1 x_2$ "

Valid for these two graphs:

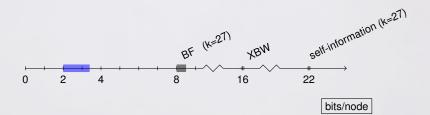


So,

 $1 \text{ NDS} \longleftrightarrow >1 \text{ dBGs}$  1 Membership DS  $\longleftrightarrow$  1 dBG

### Lower bounds

#### We seek dBG representation lower bounds in the NDS model.



## NDS lower bound for linear graphs

Linear graphs



#### Theorem

NDS for linear graphs need at least 2 bits/k-mer of space.

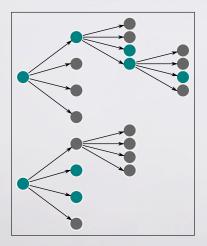
Proof sketch:

- Number of DNA strings that have *n* distinct *k*-mers and start with same *k*-mer:  $\approx 2^{2n}$  [Gagie 12]
- Number of linear dBGs with *n* nodes and same left-most node:  $\approx 2^{2n}$
- Suppose NDS needs < 2*n* bits,
- Two graphs have the same NDS (pigeonhole principle)

# NDS lower bound

#### Theorem

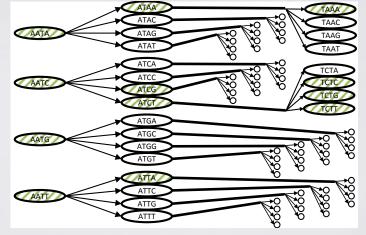
NDS need at least 3.24 bits/k-mer.



Proof sketch:

- Construct a large family of *N* graphs, such that for any two graphs, ∃ k-mer that appears in both graphs but with different neighbors.
- Suppose NDS needs < log(N) bits
- 3. Two graphs have the same NDS (pigeonhole principle), contradiction

Our construction has  $N = 2^{3.24n}$ 



- Fix an even  $k\geq 2,\,\ell=k/2,\,m=4^{\ell-1}$
- Consider a graph with  $\ell + 1$  levels of  $\{A^{\ell-i}T\alpha, \alpha \in \Sigma^{i+\ell-1}\}$
- Select *m* nodes per level
- $\binom{4m}{m}^{\ell}$  possible graphs

- 
$$\binom{4m}{m}^\ell \geq 2^{(c-\epsilon)\ell m}$$
 with  $c=8-3\log 3pprox 3.24$ 

## **Conclusion / Perspectives**

#### Navigational data structures:

- Model for recent dBG data struct.
- Lower bound: 3.24 bits/k-mer
- Gap with known non-parameterized upper bounds (16)

#### Open questions:

- Closing the gap above
- Entropy-compressed dBG representations

#### Contact/references:

- On the Representation of de Bruijn Graphs, 2014
- rayan.chikhi@univ-lille1.fr
- http://rayan.chikhi.name