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Abstract

This report explains the research work done during a February-June 2008 internship at

MIT under the supervision of Scott Aaronson and Seth Lloyd. It exposes some necessary

background knowledge in quantum mechanics, quantum computing and quantum complexity

theory, and then focuses on the work conducted during this internship. The subject of this

internship is to study two important classes of quantum problems, QMA and QMA(2), which

consist of all languages that can be verified using respectively one and two unentangled

quantum proofs. Whether these classes are equal or distinct is an open problem of great

interest in quantum computing. To prove that they are the same, one can possibly simulate

QMA(2) problems in QMA using a quantum operation called a disentangler. However, it has

been conjectured that polynomial disentanglers do not exist, and therefore this approach fails.

In this report, we investigate this conjecture and give two results: in a specific situation,

when exponential precision is required, this conjecture holds as long as P 6= NP. Moreover,

in the same situation, we show that the conjecture could be proven unconditionally using a

stronger hypothesis.

Introduction

We have witnessed a growing interest in quantum computation over the last decade. While

the superiority of quantum computers over classical ones is not yet confirmed by practical

experiment, theoretical results predict it to some extent. Efficient algorithms such as Shor’s

factoring algorithm [25] have encouraged us to believe that there exists many algorithms

that perform faster on quantum computers. Quantum complexity theorists are currently

investigating this question, in terms of complexity classes.

A quantum complexity class of interest is the class of Quantum Merlin-Arthur problems

(QMA), the quantum counterpart of NP. Every problem in this class can be formulated as

such: Arthur, a quantum computer, is provided a certificate for his problem by Merlin, an all-

knowing computer, and he has to verify it in polynomial time with high success probability.

In classical Merlin-Arthur problems, whether Merlin provides one or two certificates does

not help Arthur. However in quantum instances, providing two un-correlated quantum

certificates defines a problem that belongs to a possibly strictly larger complexity class

(QMA(2)). Whether QMA(2) 6= QMA has been an open problem since 2001, cited by many

authors [21, 20, 2] as highly relevant for our understanding of quantum computing. If we

knew that QMA(2) 6= QMA, it would mean that there exists mathematical statements that

can only be verified with two quantum proofs; no matter how polynomially long it is, one

proof would never suffice.

During this internship, we studied this problem and gave formal evidence supporting

the claim that QMA(2) 6= QMA. More precisely, we focused on showing that a natural
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approach to prove that QMA(2) = QMA fails. This approach is formulated in [1]: if there

exists a polynomial-time procedure that maps every quantum certificate to a sufficiently good

approximation of two un-correlated quantum certificates, then Arthur can simulate a QMA(2)

protocol in QMA, and QMA(2) = QMA. Such procedure is called an (ε, δ)-disentangler, where

ε and δ are approximation parameters that we later define more formally. In the same

publication, it was established that (0, 0)-disentanglers do not exist in any finite dimension.

The authors then list two open problems:

• Can we prove that (ε, δ)-disentanglers only exist if the input space is exponentially

larger than the output space?

• Can we at least show this for (ε, 0) or (0, δ)-disentanglers?

We give elements of answer to both of these questions. We show that polynomial-input,

exponential-error disentanglers do not exist if we assume that P 6= NP. We prove that, given

a disentangler, one can efficiently solve a hard quantum separability problem. We finally

give an unconditional result for exponential-error disentanglers, by showing that the (ε, δ),

(ε, 0) and (0, δ) cases are equivalent.

Since the approach to prove that QMA(2) = QMA relies on the existence of constant-error

disentanglers, both questions remain open. Our results nevertheless provide a step towards

the study of disentanglers.

The rest of this paper is organized as follows:

Section 1 Introduction to quantum mechanics

Section 2 Introduction to quantum computing and quantum complexity theory

Section 3 Definition and motivation of our problem, and related results

Section 4 Our results and discussion

1 Quantum Mechanics for Computer Scientists

Before introducing our problem, one should first be familiar with the underlying theories,

in increasing order of abstraction: quantum mechanics, quantum computing and quantum

complexity. We begin with an introduction to quantum mechanics which only requires the

reader to know basic mathematical concepts such as vector spaces and probabilities.

1.1 Basics of Quantum Mechanics

From a computer science point of view, quantum mechanics can essentially be treated as a

generalization of probability theory to complex values [3, 24]. To give an intuition of this,

consider a single bit described by classical probabilities as a random variable being 0 with

probability α and 1 with probability β. Classical probabilities impose α + β = 1.
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Figure 1: Representation of a qubit in superposition |ψ〉 = α |0〉 + β |1〉 using the Bloch
sphere. This representation allows a three-dimensional view of a four-dimensional object.
By multiplying |ψ〉 by an unobservable phase factor, α can be made a real number, and
therefore only three real parameters are needed to describe the qubit. The Bloch sphere
representation corresponds to α = cos(θ/2) and β = eiφsin(θ/2). The coordinates are:
x = sin(θ)sin(φ), y = sin(θ)cos(φ), z = cos(θ).

Quantum mechanics tells us that there exists physical entities similar to the bit that admit

complex probability weights (α, β) where |α|2 + |β|2 = 1. This leads to the definition of a

qubit with two states |0〉 and |1〉, which is said to exist in a superposition |ψ〉 = α |0〉+ β |1〉
where α, β are complex numbers such that |α|2 + |β|2 = 1 (see Figure 1). However, the

superposition cannot be seen: any attempt to measure the qubit state will permanently

affect it to |0〉 with probability |α|2 or to |1〉 with probability |β|2. Therefore, unlike bits, we

can never recover the description of a qubit (knowledge of α and β) by measuring its value.

1.2 Quantum Formalism

After having exposed some intuition on quantum mechanics, we now introduce the quantum

formalism as well as the fundamental postulates. This can help gain a better understanding

of why qubits behave the way we described them.

Postulate 1 An isolated physical system is a complex vector space with inner product (that

is, a Hilbert space H). It is completely described by the pure state vectors, which are

unit vectors, noted |ψ〉.

Postulate 2 The evolution of a closed quantum system is described by an unitary operator
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U (U †U is the identity1). Between time instants t1 and t2, t1 < t2, the state vector

|ψ1〉 is related to |ψ2〉 by an unitary U , depending only on t1 and t2,

|ψ2〉 = U |ψ1〉 .

Postulate 3 The system can be measured by a collection {Mn} of measurement operators

that satisfies the completeness relation:
∑

i

M †
i Mi = I. The operator index refers to

the measurement outcome (ie. Mi measures the outcome i). If the state of the system

is |ψ〉, then the result i occurs with probability

p(i) = 〈ψ|M †
i Mi |ψ〉

where 〈ψ| is |ψ〉†, the dual vector of |ψ〉. Immediately after the measurement, the state

of the system becomes
Mi |ψ〉√
p(i)

Postulate 4 The state space of a composite system (a system made up of two or more

distinct systems) is the tensor product2 of the state spaces of the component systems.

For instance, if each component system is in the state |ψi〉, i = 1, .., n, the composite

system is in the state |ψi〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.

Postulate 1 tells us that qubit superpositions exist, as a qubit is described by a two-

dimensional state space. Postulate 2 is more commonly known in a refined formulation that

describes the evolution of a system in continuous time. In that case, Postulate 2 is the

Schrödinger equation:

i~
d |ψ〉
dt

= H |ψ〉 ,
whereH is an Hermitian operator (the Hamiltonian) and ~ is Planck’s constant. However,

it suffices to consider the discrete formulation of Postulate 2 for the study of quantum

computing.

Postulate 3 is the reason why we never observe superpositions in everyday life. When the

state of the system is measured by any experimental device, for example an eye, it collapses

with certain probability to a state modified by the measurement outcome.

The intuition behind Postulate 3 and 4 can be easily seen using vector notation. Suppose

|ψ1〉 and |ψ2〉 are defined as:

1U† = (UT )∗, the complex transpose and conjugate (also called Hermitian adjoint) of U
2Definition of vector tensor product is given below, and at the same time an intuition of this postulate is

provided.
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|ψ1〉 =



a1

...

an


 , |ψ2〉 =



b1
...

bm


 ,

(ai)i and (bi)i are complex coordinates, then |ψ1〉 ⊗ |ψ2〉 is a n×m vector defined by:

|ψ1〉 ⊗ |ψ2〉 :=



a1 |ψ2〉

...

an |ψ2〉


 =




a1b1
a1b2

...

a1bm
a2b1

...

anbm




If we consider the square of the coordinates (ai)i of |ψ1〉 as a probability distribution (the

fact that |ψ1〉 is an unit vector for the inner product norm hints us to do so) and see |ψ1〉
as a superposition of basis states (|i〉)i, |ψ1〉 =

n∑
i=1

ai |i〉, the state |i〉 has probability |ai|2

of being observed. This is consistent with Postulate 3, because what we have just done is

implicitely define a complete family of measurements, Mi = |i〉 〈i|.
Similarly, we define a second basis (|i′〉)j such that |ψ2〉 =

m∑
i=1

bi |i′〉. Then |ψ1〉⊗|ψ2〉 is a

superposition where the state |1〉⊗ |1′〉, also noted |11′〉 for simplicity, has probability |a1b1|2
of being observed. Therefore, the tensor product defines a “natural superposition principe”

for quantum mechanics.

We suggest to refer to [24] for a complete introduction to the postulates of quantum

mechanics and quantum formalism.

The next section presents a selection of more advanced concepts in quantum mechanics.

They will be used to establish our results, later in this report. For better understanding, we

provide an illustration of these concepts in Section 1.4.

1.3 Quantum States and Superoperators

A useful mathematical tool to describe quantum states are mixed states, which are ensem-

bles of pure states. A system is in the mixed state {|ψi〉 , pi}i=1..n if it is in the pure state |ψi〉
with probability pi. Let N be the dimension of H. Mixed states are conveniently represented

by a density matrix, which is a complex positive semidefinite (all eigenvalues greater than
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or equal to zero) N ×N matrix of trace 1, defined by

ρ =
∑

i

pi |ψi〉 〈ψi| .

A pure state |ψ〉 is represented by ρ = |ψ〉 〈ψ|. We denote by D(H) the set of density matrices

of states in the complex Hilbert spaceH. A revelant basis forD(H) is {|ei〉 〈ej| , i, j = 1, .., N}
where (|ei〉)i is an orthonormal basis of H, which can be identified with CN or R2N , and

therefore induce a matrix notation.

Note that the postulates of quantum mechanics can be reformulated with density matrices

instead of pure states. Density matrices describe a quantum syatem whose state is not

completely known, which is the most common scenario encountered in quantum mechanics.

This is the reason why this formalism is used in any result involving quantum computation.

We now introduce the concept of separability for density matrices, which plays a central

role in quantum computing, and specially in the problems we consider.

Consider a quantum system H described by two subsystems H1 and H2. By the fourth

postulate of quantum mechanics, the Hilbert space describing this system is H = H1 ⊗H2.

Let N = dimH1 dimH2, then H is a N-dimensional space consisting of elements of the form:

∑

|h1〉∈H1,|h2〉∈H2

αh1,h2(|h1〉 ⊗ |h2〉)

The state ρ acting on the Hilbert space H = H1 ⊗H2 is called separable if

ρ =
k∑

i=1

piρ
(1)
i ⊗ ρ

(2)
i

where {pi}i are probabilities and ρ
(k)
i are states on Hk.

A state which is not separable is entangled.

The most general type of operation on quantum states, in other words a discrete-time

transformation of the physical system, can be described by a linear map called a superop-

erator:

Φ : H → H′

ρ 7→ ρ′

Note that Φ : H → H′ is notation abuse, as ρ is a density matrix representing an

ensemble of pure states in H. The correct definition is Φ : MH →M′
H, but the former is

shorter and often used in the literature [1].

Two commonly used distances measures are the Frobenius distance and the trace distance,
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which are equivalent as long as the Hilbert spaces we consider are finite-dimensional, and

defined from the following norms. (ρ∗ denotes the complex conjugate of ρ, and tr(M) is the

sum of diagonal elements of M)

Frobenius norm ||ρ||F =
√
tr(ρ∗ρ)

Trace norm ||ρ||tr = tr(
√
ρ∗ρ)

The trace norm is very useful in quantum mechanics for the following reason: if two

density matrices are close in trace distance, then a quantum measurement performed on

those quantum states will result in probability distributions which are close together in the

classical sense (for two probability distributions (px)x and (qx)x, D(p, q) =
∑

x |px−qx|) [24].

Therefore, states close in trace distance are indistinguishable by measurement.

1.4 Entanglement

An intuition for the definition of entanglement is provided in [31], and is summarized here.

Consider two different laboratories which are doing a quantum experiment. In laboratory

A (resp. B), the quantum system is described by a state ρA (resp. ρB) acting on HA

(resp. HB). Therefore, by the fourth postulate of quantum mechanics, the global state of

the experimental system is not in a classical product (HA × HB) form, but is in a tensor

product form H = HA ⊗HB. An operation performed by laboratory A can be described by

a function (superoperator) of the form ΦA ⊗ 1, and equivalently 1 ⊗ ΦB for laboratory B.

In 1935, Einstein, Podolsky and Rosen [11] noticed that if the global state of the system is

chosen suitably, then an operation in laboratory A can change the system state in laboratory

B.

For instance, consider the following situation, where both laboratories each have a single

quantum bit. The global state of the system is chosen to be a superposition of pure states

of qubits:

|ψ〉 =
1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

Suppose that laboratory A measures its qubit on the basis (|0〉A , |1〉A). This measurement

corresponds to an operator of the form ΦA⊗1. By the third postulate of quantum mechanics,

the state of the system will collapse to either |0〉A ⊗ |0〉B or |1〉A ⊗ |1〉B, depending on

the outcome of the measurement done at A. After, if laboratory B decides to do a similar

measurement on its qubit, instead of finding that qubit B is |0〉B or |1〉B with probability 1/2,

the outcome will always be the same as laboratory A. This holds even if both laboratories

are arbitrarily far apart!

By taking advantage of this effect, it is possible with elementary quantum operations

to transfert any given state in laboratory A to laboratory B, providing both of them are
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initially in a suitable global state. This led to the discovery of quantum teleportation [8], in

1993.

2 Quantum Computing

2.1 Quantum Computers

The quantum computer is a new computational model that has not been fully physically

implemented yet. Since a classical computer is built using electrical circuits made of wires

and logic gates, a quantum computer is defined with wires and elementary quantum gates

over qubits, as described in [24]. Using a certain subset of quantum gates, it has been proved

that quantum computers can simulate classical computers. A natural question arises: are

they more powerful?

Some evidence tends to confirm that quantum computers are indeed more powerful than

classical computers, however no formal proof exists. For instance, the quantum factoring

algorithm [25] discovered by Shor in 1994 has a quantum polynomial time complexity, while

known classical implementations of integer factoring have at best an exponential running

time; yet, a polynomial classical algorithm may exist. Efficient quantum algorithms have

been discovered for other problems, such as Grover’s quantum search with quadratic speed-

up [14] and Simon’s hidden subgroup algorithm with exponential speed-up [26]. However,

none of these problems have been proven to be classically unsolvable in polynomial time,

so the problem remains: we do not know whether quantum computers are (exponentially)

more powerful than classical computers.

In the last two decades, researchers have been interested in the new field of quantum

complexity theory, to formally understand how powerful quantum computers are compared

to classical computers.

2.2 Quantum Complexity Theory

Defining a quantum equivalent to the classical complexity theory is not straightforward. It

is not obvious that Turing machines have a quantum counterpart, one reason is that qubits

are not deterministic!

Quantum Turing machines were first defined by Deutsch [10] in 1985, then slightly mod-

ified by Bernstein and Vazirani [9]. Due to the nature of qubits, quantum Turing machines

(QTM) are probabilistic, ie. acceptance of an initial configuration occurs with a certain

probability. Therefore, QTM are the quantum equivalent of probabilistic Turing machines

[3], and can be used to define quantum complexity classes similarly to classical probabilistic

ones. We first review some relevant probabilistic classes in classical complexity theory.
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Figure 2: Known inclusions between complexity classes (note that some of them could be
equalities). Classical complexity classes are in blue, quantum classes in red.

We define P as the class of all decision problems that are solvable by deterministic Turing

machines in polynomial time. One could note that a large amount of decision problems that

are not in P can still be solved efficiently, using a randomized algorithm, ie. a polynomial-time

algorithm that outputs the correct answer with probability of at least 2/3. The complexity

class of such problems is named BPP [3], after Bounded-error Probabilistic Polynomial-time.

In the same fashion, we define BQP the class of decision problems that can be solved

in quantum polynomial time, with a correct answer probability at least 2/3. Whether BQP

6= BPP is an open problem; solving it would tell us whether quantum computer are more

powerful than classical computers.

This is the purpose of quantum complexity theory: discovering relations between com-

plexity classes could immediately tell us what kind of problems can be efficiently solved

with a quantum computer. For instance, Shor’s algorithm gave evidence that NP ∩ co-NP

problems (a class that contains the integer factoring problem) could be solved in quantum

polynomial time. Known inclusions between the complexity classes we have seen (and some

others to be introduced in the next section) are shown Figure 2.
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2.3 Oracles

A useful tool in (quantum and classical) complexity theory, when one fails to prove relation-

ship between two complexity classes, are oracles : one can give evidence of such relationship

by proving a stronger result, such as ”if problem X was easy to solve, then these complexity

classes A and B are equal (resp. distinct)”. Such assumption is called relativization, the

problem or class of problems involved in the hypothesis are indifferently named oracle.

Formally, an oracle is defined as a black-box that solves a specific problem in constant

time. We define AU the complexity class of problems which belong to A if they are given an

oracle that solves U. For instance, it is obvious that NP ⊂ P NP. Oracles have been applied

to classical complexity theory to study the P = NP question: Baker, Gill, and Solovay

[6] showed that there exists an oracle A relative to which P = NP, and another oracle B

relative to which P 6= NP. Therefore, oracles established that proving P 6= NP will require

un-relativization techniques, ie. techniques that are not affected by the presence of an oracle.

Quantum oracles have recently been introduced in [2] as a quantum generalization of clas-

sical oracles. Similarly, they model a quantum subroutine to which the quantum algorithm

has black-box access. Examples of quantum oracles are given in the next section.

Proving an oracle separation, subset or equality can give some insight on the actual,

non-relativized, relation between two classes. In the context of our internship, we seek to

prove a quantum oracle separation between QMA(2) and QMA.

3 Quantum Merlin Arthur

In this section we introduce the class of problems that have recently gained attention within

the quantum community, Quantum Merlin-Arthur (QMA) problems. They define a quantum

analog of NP for quantum computers. Characterization of QMA problems will help us

understand the limitations of quantum computing the same way we commonly see NP as a

barrier for classical computers.

We first give a short introduction to this generalization. The complexity class NP can be

viewed as an interactive proof system [12], ie. a prover and a verifier such that:

• The prover has unlimited computational power to compute a polynomial-size proof

(also called certificate) according to the input.

• The verifier receives the proof and determines its validity in polynomial time. It accepts

the proof (ie. answers ”yes” to the decision problem) if and only if it is valid.

Merlin-Arthur problems have been introduced by Babai [4] in 1985 to generalize this inter-

pretation of NP to a probabilistic viewer, instead of a deterministic one. This relates to our

knowledge that randomized algorithms are more powerful than polynomial ones, ie. P ⊂
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BPP. In MA problems, Merlin is the unbounded prover and Arthur has the computing power

of randomized algorithms to verify proofs.

3.1 MA, QMA Classes

The complexity class MA is defined as the class of problems which can be solved by a Merlin-

Arthur protocol:

• Merlin is a NP machine that computes a polynomial-size proof which is sent to Arthur.

• Arthur is a BPP machine which must verify the proof and accept it with probability

at least 2/3 if it is true, or at most 1/3 if it is false.

It is straightforward to establish that NP ⊂ MA [4], considering that P ⊂ BPP.

Using the same intuition as MA, a natural generalization of NP to quantum computers

leads to the definition of QMA [30]: Merlin computes a polynomial-size quantum proof and

Arthur is a BQP machine. Formally, a quantum proof is a quantum register (ie. n qubits),

which is the direct translation of the fact that a classical proof consists of n bits. It has been

conjectured [21] that due to the entanglement (quantum correlation) that occurs between

qubits, two quantum proofs of n unentangled qubits given separately could be more powerful

than a single combined one. This leads us to define QMA(2) accordingly. QMA(2) consists

of QMA problems where two unentangled proofs are provided by Merlin instead of one.

This is the subject of our internship: we aim at characterizing the expressive power of

two quantum proofs, ie. whether QMA(2) equals QMA. This problem is motivated by the

conjecture seen above, which led to the very definition of QMA(2). At first glance, one might

think that quantum proofs are ”only” more powerful than classical proofs because qubits

give exponentially more information than bits. Furthermore, one has never discovered a

problem that can be solved with a quantum proof but not with a classical proof. However

in the next section, we cite a publication that shows evidence that there might exist one, by

using the concept of oracles defined before.

Eventually, proving that QMA(2) 6= QMA would tell us that the power of quantum states

is not only exponentiality, but also unentanglement.

3.2 Related work on QMA

In this section, we cover the state-of-the-art publications that are related to the QMA com-

plexity class, with particular interest given to the ones that also concern QMA(2).

A reader who has only moderate tolerance for complexity theory may want to skip this

section and continue reading from Section 4.
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3.2.1 QMA and Classical Complexity

Many results are known about QMA: it is contained in PP [23], the class of decision problems

solvable by a (classical) probabilistic Turing Machine in polynomial time, with an error

probability less than 1/2. This result means that Quantum Merlin-Artur problems can only

be ”as hard” as problems that admit a classical probabilistic algorithm that gives the right

answer with probability more than 1/2.

However, QMA is not likely to be equal to PP. Since PP is believed to be strictly larger

than NP, this would establish that quantum computers flavor of NP (QMA) is more powerful

than NP. For instance, it has been established that if QMA equals PP, then PP contains PH

[28], where PH is a large class that generalize NP and co-NP, formally defined by all problems

of the form ”given an input x, does there exist a y such that for all z, there exists w.. such

that φ(x, y, z, w, ..)”. Since the latter is strongly believed to be false [28], QMA is believed

to be strictly contained in PP. This tells us that quantum NP problems are not impossible

to solve with a classical computer: there always exists a classical probabilistic algorithm for

them. The catch is that its acceptance probability may be arbitrarily close to 1/2.

QMA contains of course MA, but there also exists an oracle relative to which MA is strictly

contained in QMA [30]. This result is another evidence of the power of quantum computers

over classical computers.

These results give us a clear picture of where QMA stands in the classical complexity

inclusion tree: above MA, and below PP. The question whether QMA(2) ⊂ PP has, to the

best of our knowledge, never been asked.

3.2.2 QMA and QCMA

In the previous section, we mentioned evidence of separation between quantum proofs and

classical proofs. The class QCMA is defined as a subclass of QMA where a classical proof is

given instead of a quantum one. Studying the power of two quantum proofs is intrinsically

linked with the QMA 6= QCMA question. If we could establish that a quantum proof does

not give more information than a classical proof, then we could use the fact that receiving

two classical proofs instead of one makes no difference; because we could just concatenate

them [21]. In other words, QMA(2) = QMA may be partially answered if one showed that

QMA = QCMA. However, this is not likely to happen, considering the following.

In recent work [2], Aaronson and Kuperberg give evidence that QMA 6= QCMA by building

a quantum oracle relative to which this result holds. Whether a classical oracle separation

can be achieved is still an open problem. The authors study the only candidate for such

separation known in the literature, the Group Non-Membership (GNM) problem, proved

to be in QMA [30] (for reference, this was the problem used to prove an oracle separation

between MA and QMA in the previous chapter) . They give evidence that GNM is in QCMA,

and therefore it could not be used to establish a classical separation between QMA and
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QCMA. They furthermore conjecture that classical oracle separation can still be achieved

and sketch a methodology to build a classical oracle from a quantum one.

3.2.3 QMA(2) and QMA

Since its introduction in 2001, the QMA(2) 6= QMA question has not received much attention

until recently. It has been first formulated by Kobayashi et al. in [21], where evidence

that QMA(2) 6= QMA were given. The authors show that quantum measurements cannot

distinguish quantum correlation. However, this is not a strong complexity theoretic evidence,

as Arthur can still apply quantum operations to Merlin’s state without measuring it.

Recently, Aaronson et al. [1] showed that QMA(k) equals QMA(2) for any k ≥ 3 if

we assume the Additivity Conjecture, which is widely believed to be true in the quantum

information theory community. This result means that providing any number of quantum

proofs greater than 3 is strictly equivalent to providing only two quantum proofs. However,

the proof breaks down for QMA(2) = QMA.

In [21], a soundness condition under which QMA(2) = QMA is given: Arthur has to accept

a wrong proof with probability zero (but he can still decline correct proofs with probability

lower than 1). Finally, evidence that QMA(2) ⊂ PSPACE under a strong amplification

conjecture is given in [1].

3.2.4 QMA-completeness

A few problems are known to be QMA-complete. In the context of our internship, these

problems as such cannot help us, since we would rather be interested in QMA(2)-complete

problems, but none exists to the best of our knowledge. However, they could give us hints

on how to create a problem that would be in QMA(2) \ QMA. We list some known QMA-

complete problems:

• 2,3,5,8-local Hamiltonian problems, quantum analogues of SAT [18]. Interestingly, we

note two facts: completeness proofs among k-local flavors use very different techniques;

3-local Hamiltonian can be modified to create a QCMA-complete problem (note that

this does not prove QCMA = QMA).

• N-representability, a complex physics problem where one wants to minimize total en-

ergy while conserving specific properties of density matrices represented by N-particle

wave functions [22]. A variant called ”N-representability of pure states” is in QMA(2),

but not known to be in QMA.

• Quantum clique [7].

• Quantum identity, ie. deciding whether a quantum circuit acts almost like the identity

function, which can also be modified to create a QCMA-complete problem [22].
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4 Our Results

We now present the approaches we used to investigate the QMA(2) 6= QMA problem. This

section makes use of the concepts introduced in Section 1.3. To avoid considering different

norms, we slightly modify the definition of disentangler as introduced in [1]. In the following,

we say that a state is ε-close to another if their Frobenius distance is less than ε.

Definition 1 ((ε, δ)-disentangler). Let H and K be two finite-dimensional Hilbert spaces.

Then given a superoperator Φ : H → K⊗K, Φ is an (ε, δ)-disentangler if

1. Φ(ρ) is ε-close to a separable state for every ρ, and

2. for every separable state σ, there exists a ρ such that Φ(ρ) is δ-close to σ.

We now state the natural approach exposed in [1] to prove that QMA(2) = QMA. The

authors note that, if for sufficiently small constants ε, δ there exists an (ε, δ)-disentangler

with log dimH = O(poly(log dimK)), and if it can be implemented in quantum polynomial

time, then QMA(2) = QMA. However, the following conjecture compromises this approach.

Conjecture 1 (Watrous Conjecture). For all constants ε, δ < 1, any (ε, δ)-disentangler

requires dimH = 2Ω(dimK).

It was proven in [1] that (0, 0)-disentanglers do not exist in any finite dimension, and

the general case was left as an open question. In this section, we study (ε, δ)-disentanglers,

where ε and δ depend on the dimension of the system.

4.1 Ruling Out Exponential-Error Approximate Disentanglers

We show that the existence of exponential-error disentanglers (in terms of ε and δ depending

exponentially on n = log(dimK), the number of qubits that describe the state space K) is

unlikely, as evidenced by the following theorem.

Theorem 4.1. Suppose there exists a (ε, δ)-disentangler Φ : H → K⊗K with the following

properties:

1. dimH = poly(dimK)

2. 1/ε = O(poly(dimK)) and 1/δ = O(poly(dimK))

then P =NP.

We easily see that this result only concerns exponential-error disentanglers: when 1/ε is

set to be O(poly(dimK)), it is bounded by 2O(poly(n)) but not necessarily by O(poly(n)). The

same reasoning applies to δ.
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4.1.1 Proof of Theorem 4.1

We prove that the existence of such Φ enables us to solve two NP-hard problems, namely

approximate separability and weak separation, in polynomial time.

Let us first define the approximate separability problem, (WMEM(SM,N)), which is a

special case of the weak membership problem (WMEM(K)) for any compact and convex set

K [13].

Definition 2 (Weak membership problem for K (WMEM(K))). Given a rational

vector p ∈ Rn and a rational δ > 0, assert either that

p ∈ S(K, δ), or, (1)

p /∈ S(K,−δ) (2)

where S(K, δ) := ∪x∈KB(x, δ) and S(K,−δ) := {x | B(x, δ) ⊆ K}.

Intuitively, S(K, δ) is the set of points that “almost belong to K” and S(K,−δ) is the

set of points that are “deep in K”.

It was proven that WMEM(K) is a NP-hard problem when 1/δ is exponentially large

(as a function of M and N) and N ≤M ≤ N(N − 1)/2 [15]. However, since SM,N is the set

of separable states in M ⊗N , dimM is already exponentially large in terms of the number

of qubits in the system (n = log2 dimM). Therefore, such 1/δ value would correspond to a

superexponential-error disentangler, of less interest than exponential-error ones. Still, it is a

first step towards proving a stronger result for exponential-error disentanglers.

To achieve a reduction to WMEM(SM,N), we use a well-studied class of algorithms:

semidefinite programs [27]. The most general definition of semidefinite programs is as follows.

Definition 3 (Semidefinite Program (SDP)). Given the vector c ∈ Rm and Hermitian

matrices Fi ∈ Cn×n, i ∈ [|0,m|],

minimize cTx

subject to: F (x) ≥ 0,

where F (x) = F0 +
∑m

i=1 xiFi.

Semidefinite programs can be solved efficiently in polynomial time O(m2n2.5) [27].

Proposition 1. Suppose there exists a (ε, δ)-disentangler Φ : H → K⊗K with the following

properties:

1. dimH = poly(dimK)

16



2. 1/ε = O(2(dimK)) and 1/δ = O(2(dimK))

then WMEM(SN,N) can be solved in polynomial time.

Proof. The following SDP is used to solve an instance (ρ, δ′) of WMEM(SN,N) when a (ε, δ)-

disentangler Φ with dimH = poly(dimK) and max(ε, δ) ≤ δ′ is given.

minimize ||Φ(σ)− ρ||tr
subject to: σ ≥ 0

tr(σ) = 1

Depending on the result of this SDP, answer ρ ∈ S(SN,N , δ
′) if min||Φ(σ) − ρ||tr ≤ δ′ −

max(ε, δ); and ρ /∈ S(K,−δ′) otherwise.

By making further use of Φ it is possible to solve an even harder problem than WMEM(SM,N),

namely WSEP(SM,N), which is NP-hard for polynomial values of 1/δ [17] (and therefore is

related to exponential-error disentanglers). Again, this is a special case of a more general

problem (WSEP(K)).

Definition 4 (Weak separation problem for K (WSEP(K))). Given a rational vector

p ∈ Rn and a rational δ > 0, either

• assert that p ∈ S(K, δ), or,

• find a rational vector c ∈ Rn with ||c||∞ = 1 such that cTx < cTp for every x ∈ K.

where S(K, δ) := ∪x∈KB(x, δ)

This problem not only asks whether p is weakly in K, but it also requires to provide a

separating hyperplane (c) if it is not. With some effort, it can be proved that if we can solve

WSEP then we can solve WMEM [13].

We prove that our disentangler Φ is powerful enough to solve the weak separation problem

WSEP(SM,N).

Proposition 2. Suppose there exists a (ε, δ)-disentangler Φ : H → K⊗K with the following

properties:

1. dimH = poly(dimK)

2. 1/ε = O(poly(dimK)) and 1/δ = O(poly(dimK))

then WSEP(SN,N) can be solved in polynomial time.
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Proof. Consider an instance (ρ, δ′) of WSEP(SN,N). The following polynomial-time algo-

rithm is used to solve the problem:

• Solve (ρ, δ′) as an instance of WMEM(SN,N).

• If the result is p ∈ S(K, δ′), then terminate.

• If not, find c as the result of the following SDP:

maximize ρT c

subject to: Φ(x)T c+ δ < ρT c

x ≥ 0

tr(x) = 1

||c||∞ = 1

Such vector c always exists as a consequence of the Hahn-Banach theorem applied to the

bounded convex set SN,N . For every σ ∈ SN,N , since Φ is a (ε, δ)-disentangler, there exists

x ∈ H such that ||σ − Φ(x)|| ≤ δ. It follows that c verifies σT c < Φ(x)T c + δ < ρT c, hence

cTσ < cTp for all σ ∈ SN,N , and the algorithm terminates correctly.

Theorem 4.1 follows from this proposition and the fact that WSEP(SN,N) is NP-hard

with polynomial error.

4.1.2 Discussion

We note that Theorem 4.1 was also independently known by Watrous, in unpublished works

[29]. We should also stress that while our results only help ruling out exponential-error

disentanglers and not other flavors, this is because little is known about the hardness of

approximating separable states with logarithmic (corresponding to a polynomial number of

qubits, hence polynomial-error disentangler) or constant error.

An interesting point can be made if we discuss the NP-hardness of WMEM(SM,N) with

constant-error:

• If WMEM(SM,N) is NP-hard with constant-error, then Theorem 4.1 directly implies

that constant-error (ε, δ)-disentanglers do not exist unless P =NP. Therefore, we would

have strong evidence supporting Conjecture 1 and the disentangler approach to prove

QMA(2) = QMA would fail.

• If WMEM(SM,N) is tractable with constant-error, it means that there exists an efficient

algorithm that decides the separability of a state with constant-error. Arthur could
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then use it to tell whether Merlin sends him an entangled state, and therefore does

not need to rely on the QMA(2) promise that the state is separable. This supports the

intuition that QMA(2) = QMA.

However, all the separability algorithms with constant approximation parameter that we

are aware of have an exponential complexity [17].

4.2 Equivalence of Exponential-error Disentanglers

We have established the following result: to show the non-existence of exponential-error

disentanglers unconditionnally, it suffices to prove it for any of those cases: (ε, δ), (ε, 0) or

(0, δ).

4.2.1 Results

In this section, we use the following definitions and notations:

H, K are respectively the input (output) Hilbert spaces of a disentangler

D(H) is the set of density operators in H

S is the set of separables operators in D(K ⊗K)

d is the dimension of K ⊗K, d := (dimK)2

ρ∗ is I/(dimK)2, the maximally mixed state3 where I is the identity operator, and can be

shown to be the center of S

δS is the boundary4 of S

Let Φ be an (ε,0)-disentangler Φ : H → K ⊗ K and dim(H) is finite. Recall that the

image of an (ε,0)-disentangler contains S. Let ρ ∈ D(H), and define p(Φ(ρ)) as the point

that belongs to the line (ρ∗,Φ(ρ)) and that lies on the boundary δS of S. (ie. intersection

of {(1− x)Φ(ρ) + xρ∗, x ∈ [0, 1]} and δS).

If Φ(ρ) is always very close to p(Φ(ρ)), we could apply a small transformation to Φ to

make its own image included in S, and hopefully obtain a (0, δ)-disentangler. An illustration

of this idea is provided in Figure 3.

The problem is, intuitively, that S could have very long spikes. The first lemma shows

that, since there exists two balls B1, B2 such that B1 ⊂ S ⊂ B2, the image of Φ is either

inside S, or not too far away from the boundary of S.

3In this section, ρ∗ is not the complex conjugate of ρ, but is a specific state (the maximally mixed state)
that has nothing to do with ρ. This misleading notation is commonly used.

4The notation δS is widely used, and has nothing to do with the δ of (ε, δ)-disentanglers.
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ImΦ

S

≤ ε

≤ δ

S

ImΦ

Figure 3: Sketch of an (ε, 0)-disentangler and a (0, δ)-disentangler. The gray region represents
the image of the disentangler, which is a convex set. The set of separable states, S, is a
convex and bounded set. This sketch is overly simplified and inaccurately represents high-
dimensional objects.

Lemma 1.

||Φ(ρ)− ρ∗|| ≤ αε+ ||p(Φ(ρ))− ρ∗||
where α2 := (R2

2+ε2)/R2
1, R2 =

√
(d− 1)/d being the radius of the smallest ball containing S

and R1 =
√

1/(d(d− 1)) the radius of the largest ball contained in S (both of them centered

at ρ∗, Gurvits results [16]), thus α ≤ √
2d.

The proof of all lemmas are left to the Appendix. Define Φ̃ε′ = (1 − ε′)Φ + ε′ρ∗. Is it a

(0, δ)-disentangler? In other words, by how much do we have to “squeeze” the image of Φ

so that if lies completely in S?

The following lemma gives a lower bound for ε′.

Lemma 2.

||((1− ε′)Φ(ρ) + ε′ρ∗)− ρ∗|| ≤ ||p(Φ(ρ))− ρ∗||

if ε′ ≥ (1 +
R1

αε
)−1

Define ε′ := (1 +
R1

αε
)−1, then we compare how far the image of Φ̃ε′ is from Φ.

Lemma 3.

||(1− ε′)Φ(ρ) + ε′ρ∗ − Φ(ρ)|| ≤ α2ε

Since Φ is a (ε, 0)-disentangler, Φ̃ε′ is a (0, (α2 + 1)ε)-disentangler.

Theorem 4.2. Let Φ : H → K ⊗ K be an (ε,0)-disentangler. Then, we can construct a

(0, δ)-disentangler with δ = (2(dimK)2 + 1)ε.
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In the next theorem, we prove that an inverse transformation is also possible. For this,

we need to show that the image of a (0, ε)-disentangler is not only close to every separable

states, but contains all the separables states except those close to the border of S. Then, we

apply a similar transformation as before to obtain a (δ, 0)-disentangler.

The following proposition, which can also be of independant interest, tells us that the

image of a (0, ε) disentangler contains all the separable states that are not too close to δS.

Proposition 3. Let Φ : H → K⊗K be an (0,ε)-disentangler. Then, any state of the form

ρ = xρ∗ + (1− x)σ,

where σ ∈ δS and x ∈ [0,
ε

R1

] belongs to the image of Φ, ie. there exists ρ′ s.t Φ(ρ′) = ρ.

Let ε0 =
ε

R1

. Again, p(Φ(ρ)) is the point that belongs to the line (ρ∗,Φ(ρ)) and that lies

on the boundary of S. (ie. the intersection of {(1− x)Φ(ρ) + xρ∗, x ∈ [0, 1]} and δS).

Define Φ̃ε′ = (1 + ε′)Φ− ε′ρ∗. From the following expressions:

p(Φ(ρ)) = (1 + x(ρ))Φ(ρ)− x(ρ)ρ∗

Φ̃ε′(ρ) = (1 + ε′)Φ(ρ)− ε′ρ∗

we notice that Φ̃ε′ contains S iff ε′ ≥ x(ρ) for all ρ.

Lemma 4. For all ρ, x(ρ) ≤ ε0
1 + ε0

.

Let ε′ =
ε0

1 + ε0
.

Lemma 5.

||Φ̃ε′ − Φ(ρ)|| ≤ αε,

with α := R2/R1.

Therefore Φ̃ε′ is a ((α + 1)ε, 0) disentangler.

Theorem 4.3. Let Φ : H → K ⊗ K be an (0,ε)-disentangler. Then, we can construct a

(δ, 0)-disentangler with δ = (dimK2)ε.

Finally, this result can be extended to (ε, δ)-disentanglers since Proposition 3 also holds

for them.

Theorem 4.4. Let Φ : H → K ⊗ K be an (ε, δ)-disentangler. Then, we can construct a

(γ, 0)-disentangler.

Proof idea. • Use Proposition 1 to find ε0 = δ/R1.
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• Define Φ̃ε′ = (1 + ε′)Φ− ε′ρ∗.

• Prove that S ⊂ Φ̃ε′ for ε′ =
ε0

1 + ε0
, fix ε′.

• Because the image of Φ can now be ε-outside S, ||Φ̃ε′ − Φ(ρ)|| ≤ ε′(R2 + ε)

• Φ̃ε′ is a ((1 + α)ε+ ε2, 0) disentangler.

4.2.2 Discussion

From these results, it follows that exponential-error disentanglers are equivalent to (ε, 0) or

(0, δ)-disentanglers, which have more interesting properties. For instance, a simple example

for both of them is provided in [1].

Also, note that our results cannot be easily extended to polynomial-error disentanglers

since the radius R1 depends exponentially on the number of qubits, and is optimal.

Conclusion

In this report, we introduced quantum computing and quantum complexity theory. We then

described the class of problems we are interested in, namely QMA, and discussed why study-

ing them would increase our knowledge on the power of quantum computers. Specifically,

our internship focuses on the whether QMA(2) equals QMA. We studied an approach to

prove that QMA equals QMA(2) by using a quantum operation called disentangler, and gave

evidence that such operation is not likely to exist. We obtained the following results:

1. A disentangler on poly(n) qubits that is exponentially precise does not exist unless P

=NP. If one succeeds to prove that the problem of deciding whether a quantum state

is entangled (WMEM(SM,N)) is NP-hard with constant error, then no poly(n) qubits

disentangler exists unless P =NP.

2. Unconditionally, if we want to show that poly(n)-qubits and exponentially precise

(ε, δ)-disentanglers do not exist, it suffices to show that (ε, 0) or (0, δ)-disentanglers do

not exist.

These results provide a step toward ruling out a proof that QMA equals QMA(2), therefore

give an intuition that QMA 6=QMA(2). Furthermore, it is conjectured in [1] that the non-

existence of poly(n) disentanglers could lead to an oracle separation between QMA and

QMA(2).

We conclude by listing open problems for future work:
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• Is the approximate separability problem (WMEM(SM,N)) NP-hard when the parameter

δ is constant? If not, is the weak separation problem (WSEP(SM,N)) also not NP-hard?

• Can we prove (unconditionally) that with poly(n) qubits and exponential 1/ε and 1/δ,

(ε, 0) or (0, δ)-disentanglers do not exist?

• More generally, can Conjecture 1 be proven?

• Then, if Conjecture 1 holds, is there an oracle separation between QMA and QMA(2)?
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Appendix

Proof of Lemmas

Proof of Lemma 1. Let ρ ∈ D(H). Its image by Φ is ε-close to a separable state σ. Suppose

that it Φ(ρ) is not inside S. We want to evaluate the distance d between Φ(ρ) and the

intersection I of δS and the line (ρ∗,Φ(ρ)). It is maximal when σ is as far as possible to ρ∗,
ie. ||σ − ρ∗|| = R2.

Since S is convex and contains a ball B of separable states centered at ρ∗, S contains

a segment starting at σ and ending at a point tangent to B. Let H be the orthogonal

projection of Φ(ρ) to such segment, on the plane defined by (ρ∗, σ,Φ(ρ)).

Using Figure 1, we define d = ||Φ(ρ)− I||, x = ||Φ(ρ)−H|| ≤ ε, h2 = ||IH|| = d2 − x2,

R2 = ||I − ρ∗||2 ≤ R2
2 + ε2.
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Figure 4: Sketch of geometric argument for Lemma 1

We have the following relation:
x

R1

=
h√

R2 −R2
1 − h

. Hence,

h =
x

R1

(
√
R2 −R2

1 − h)

h(1 +
x

R1

) =
x

R1

√
R2 −R2

1

h2 ≤ (
R2 −R2

1

R2
1

)ε2

d2 ≤ (
R2

2 + ε2

R2
1

)ε2

d2 ≤ α2ε2,

where α2 := 2d2 since
R2

2 + ε2

R2
1

= (
d− 1

d
+ ε2)(d(d− 1)) ≤ 2d2.

Proof of Lemma 2.

||((1− ε′)Φ(ρ) + ε′ρ∗)− ρ∗|| ≤ (1− ε′)||Φ(ρ)− ρ∗||
≤ (1− ε′)(||Φ(ρ)− p(Φ(ρ))||+ ||p(Φ(ρ))− ρ∗||)
≤ (1− ε′)(αε+ ||p(Φ(ρ))− ρ∗||),

by the previous lemma. Therefore

||((1− ε′)Φ(ρ) + ε′ρ∗)− ρ∗|| ≤ ||p(Φ(ρ))− ρ∗||
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if

(1− ε′)(αε+ ||p(Φ(ρ))− ρ∗||) ≤ ||p(Φ(ρ))− ρ∗||
(1− ε′)αε ≤ ε′||p(Φ(ρ))− ρ∗||

αε

αε+ ||p(Φ(ρ))− ρ∗|| ≤ ε′

And by noting that ||p(Φ(ρ))− ρ∗|| ≥ R1, we obtain the lower bound.

Proof of Lemma 3.

||(1− ε′)Φ(ρ) + ε′ρ∗ − Φ(ρ)|| = ε′(||Φ(ρ)− ρ∗||)
≤ ε′(ε+R2)

≤ R2 + ε

1 +
R1

αε

≤ (R2 + ε)R2
2ε

R2
2ε+R2

1R2

And since R2 ≥ R1,
(R2 + ε)R2

2ε

R2
2ε+R2

1R2

≤ (R2 + ε)R2
2ε

R2
1ε+R2

1R2

and we obtain:

||(1− ε′)Φ(ρ) + ε′ρ∗ − Φ(ρ)|| ≤ R2
2

R2
1

ε

≤ α2ε

Proof of Proposition 3. The image of Φ is a convex subset of S. For any state of S, there is

a state in the image of Φ which is ε-close to it. It suffices to know how far this image can be

from the border of S, to get an upper bound on the gap between the image of Φ and S.

Formally, we consider ρ as defined in the hypothesis.

||ρ− σ|| = x||ρ∗ − σ|| ≤ xR2

Using a geometric argument similar to Lemma 1, we obtain the following bound when ρ is

ε-close to δS.

||ρ− σ|| ≤ ε
R2

R1

Therefore, for the latter bound to hold for all ρ’s, a sufficient condition is x ≤ ε/R1.
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Proof of Lemma 4. This lemma consists in finding x(ρ) as a function of ε0. We re-write Φ(ρ)

as:

Φ(ρ) =
1

1 + x(ρ)
p(Φ(ρ)) +

x(ρ)

1 + x(ρ)
ρ∗

Proposition 3 requires that
x(ρ)

1 + x(ρ)
≤ ε0, then

x(ρ) ≤ ε0
1 + ε0

.

Proof of Lemma 5.

||Φ̃ε′ − Φ(ρ)|| ≤ ε′R2

≤ ε0R2

1 + ε0

≤ R2

R1

ε
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