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INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

”It’s a giant resource that will change mankind, like
the printing press.”

Dr James Watson, co-discoverer of DNA structure

First achievement : human sequencing
I the only way to read DNA is through small fragments (called reads)

Sequencing process :
1) Obtain many copies of the genome
2) Cut them into millions of short fragments
3) Output the sequences of these fragments

reads: 
overlapping
sub-sequences,
covering
the genome 
redundantly

genome
(unknown)
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INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

Second achievement :

human de novo assembly (thesis topic)

I from millions of small fragments of DNA to a single sequence
I purely computational process
I required a supercomputer with 64 GB memory
I result was actually not perfect : assembly was fragmented
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CONTEXT, YEAR 2012 : STILL DIFFICULT TO SEQUENCE TODAY ?
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NEXT-GENERATION SEQUENCING TECHNOLOGIES

I NGS = massively parallel sequencing

HGP technologyz }| {

Sanger

3 main NGS technologiesz }| {

SOLiD 454 Illumina Proton, PacBio, Oxford
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NEXT-GENERATION SEQUENCING TECHNOLOGIES

I What everyone uses today :

HGP technologyz }| {

Sanger

3 main NGS technologiesz }| {

SOLiD 454

Illumina

Proton, PacBio, Oxford

90 percent of the world’s sequencing output is produced on
Illumina instruments.

GenomeWeb, February 14, 2012 ; verified with http://omicsmaps.com/stats

read length ≈ 100 nt, i.e. 0.000003% of the human genome

throughput equivalent to 1 human genome per day
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HOW COMPUTATIONALLY HARD IS assembly TODAY ?

Tentative comparison of some software methods :

≈ 20 de novo assemblers omitted.

Datasets : whole human genome, Illumina reads (except for Celera : Sanger reads)

I We focus on computational difficulty
I Quality of results : newer assemblies (≥ 2009) are much more

fragmented, because of shorter reads
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OUTLINE

Definition of the assembly problem

Contributions
Contribution 1 : localized assembly

Index
Traversal

Contribution 2 : incorporation of pairing information
Monument assembler
Results

Contribution 3 : ultra-low memory assembly
Minia
Results

Perspectives
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GENOME ASSEMBLY

Informal problem

Given a set of sequenced reads, retrieve the genome.

In computational terms

Find an algorithm such that :
Input : a set of reads that are sub-strings of the genome
Output : the genome

Toy example

Input : {GAT,ATT,TTA,TAC,ACA,CAT,CAA}
Output : GATTACATCAA

Immediate questions

Q : Is there a single possible output ?
A : no, s = GATTACATTACAA is another possible output
Q : Then, how to choose ?
A : need to formulate an optimization problema

aoptimization problem : problem of finding the best solution from all feasible solutions
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SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,
construct a string of minimal length
which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT,TTA}
Trivial super-string : {GATATTTTA}
Super-strings of length 3 :

none
Super-strings of length 4 : none
Super-strings of length 5 : {GATTA} ← solution

Problem with SCS-based assembly

The genome is not a SCS.
Genomes contain long repetitions, e.g. GATTACATTACAA (length = 13).
Sequencing yields reads : {GAT,ATT,TTA,TAC,ACA,CAT,CAA}
A shortest common super-string is : GATTACATCAA (length = 11).

8/39



SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,
construct a string of minimal length
which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT,TTA}
Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none
Super-strings of length 4 :

none
Super-strings of length 5 : {GATTA} ← solution

Problem with SCS-based assembly

The genome is not a SCS.
Genomes contain long repetitions, e.g. GATTACATTACAA (length = 13).
Sequencing yields reads : {GAT,ATT,TTA,TAC,ACA,CAT,CAA}
A shortest common super-string is : GATTACATCAA (length = 11).

8/39



SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,
construct a string of minimal length
which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT,TTA}
Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none
Super-strings of length 4 : none
Super-strings of length 5 :

{GATTA} ← solution

Problem with SCS-based assembly

The genome is not a SCS.
Genomes contain long repetitions, e.g. GATTACATTACAA (length = 13).
Sequencing yields reads : {GAT,ATT,TTA,TAC,ACA,CAT,CAA}
A shortest common super-string is : GATTACATCAA (length = 11).

8/39



SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,
construct a string of minimal length
which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT,TTA}
Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none
Super-strings of length 4 : none
Super-strings of length 5 : {GATTA} ← solution

Problem with SCS-based assembly

The genome is not a SCS.
Genomes contain long repetitions, e.g. GATTACATTACAA (length = 13).
Sequencing yields reads : {GAT,ATT,TTA,TAC,ACA,CAT,CAA}
A shortest common super-string is : GATTACATCAA (length = 11).

8/39



A BETTER PROBLEM FORMULATION

Overlap graph (simplified definition) [Myers 95]

Directed graph,
I vertices = reads
I edge r1 → r2 if r1 and r2 exactly overlap over ≥ k characters.

String graph

Remove transitively inferable overlaps from the overlap graph.

Toy string graph

S = {GAT,ATT,TTA,TAC,ACA,CAT,CAA} k = 2

GAT ATT TTA TAC

CAT

ACA CAA

GAT
ATT
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ASSEMBLY USING AN STRING GRAPH

Assembly in theory [Nagarajan 09]

Return a path of minimal length that traverses each node at least once.

Illustration
For the previous example,

GAT ATT TTA TAC

CAT

ACA CAA

The only solution is GATTACATTACAA.
(Recall that SCS was GATTACATCAA)
→ Graphs provide a good framework for assembly.
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ASSEMBLY USING AN STRING GRAPH

Example of ambiguities

ACT CTG TGA GAC ACC

GAA AAT ATG

GAG AGT GTG

Assembly in practice

Return a set of paths covering the graph, such that all possible assemblies
contain these paths.

Solution of the example above

The assembly is the following set of paths :

{ACTGA,TGACC,TGAGTGA,TGAATGA}
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ALMOST EVERY ASSEMBLY ALGORITHM
[Zerbino, Birney 08 ; Li et al. 09 ; Simpson et al. 12 ; ..]

Assembly graph with variants & errors

1) The graph is completely constructed.
2) Likely sequencing errors are removed.

3) Known biological events are removed.
4) Finally, simple paths are returned.

1 1 1 1 1
2

3

2

3

2

3

2

3
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Definition of the assembly problem

Contributions
Contribution 1 : localized assembly

Index
Traversal

Contribution 2 : incorporation of pairing information
Monument assembler
Results

Contribution 3 : ultra-low memory assembly
Minia
Results

Perspectives
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WHOLE-GENOME GRAPHS ARE UNNECESSARY

Practically

Genome graphs are a better framework than SCS,
but they

I are monolithic, hard to parallelize, and [Simpson et al. 09]
I require a lot of memory (human : 150+ GB). [Li et al. 09]

Contribution 1 : localized assembly

Proposed approach :
I Store reads in a

redundancy-filtered index
I Locally construct portions of the

graph at a time
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CONTRIBUTION 1.1 : REDUNDANCY-FILTERED READ INDEX

I Store reads in a redundancy-filtered index [GC, RC, DL 11]
I Locally construct portions of the graph
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REDUNDANCY-FILTERED READ INDEX : BENCHMARK

I Store reads in a redundancy-filtered index
I Locally construct portions of the graph

Memory usage (GB) of indexes

Construction time
SOAP : 41 mins
us : 64 mins
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CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

I Store reads in a redundancy-filtered index
I Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs

s t

(max breadth b, max depth d)

Won’t traverse : long branches

s

(min depth d)

Example : Whole graph

Summary of Contribution 1 :
greedy, localized assembly ≡ whole-genome graph assembly
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OUTLINE

Contribution 1 : localized assembly
Index
Traversal
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Contribution 3 : ultra-low memory assembly
Minia
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PAIRING INFORMATION
A vision of sequencing closer to reality is :

paired reads

genome
(unknown)

Sequencing a toy genome with paired reads of length 4 nt (with gaps of
length 2).

Genome ??????????????
ACTA

CTAG
TAGA

AGAG
GATA

ATAC
TACC

ACCT

In practice :
I read length ≈ 100 nt
I depending on seq. method, gaps are 0, 300, 2000 or 10000 nt.
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CONTRIBUTION 2 : STUDYING THE IMPACT OF PAIRING
INFORMATION

Reads that belong to multiple genome locations complicate analysis.
Pairing information contributes to uniquely localize reads.

 0

 25

 50

 75

 100

 5  10  15  20

U
ni

qu
e 

re
ad

s 
(%

)

Read length (nt)

E. coli

paired
unpaired

 0

 25

 50

 75

 100

 20  40  60  80  100

Read length (nt)

H. sapiens

In this figure, paired reads are separated by (300− 2 · [read length]) nt.
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CONTRIBUTION 2 : INCORPORATING PAIRING INFORMATION
IN ASSEMBLY

You are asked to solve one of these two jigsaws. Which one looks easier ?

Both are equally hard (NP-hard). [Demaine 07], [RC, DL 11]

We defined the following problems, and showed their NP-hardness :
I SCS over paired strings
I paired Hamiltonian path
I super-walk in a de Bruijn graph over paired strings
I paired Assembly Problem (introducing paired string graphs)
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CONTRIBUTION 2 : PAIRED STRING GRAPHS

Recall that long branches cannot be traversed

s

Now, add pairing information to the graph (paired string graph) :

s
t

In actual data, pairing is incomplete, with varying distance between mates.

Will traverse : pairs-linked simple paths (heuristics)

s1 s2 s3 t1 t2 t3 t4
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IMPLEMENTATION : MONUMENT ASSEMBLER

Pairs-linked simple paths Variant sub-graphs

I de novo genome assembly software for Illumina reads
I 8,000 lines of Python + 5,000 lines of C code
I proof of concept of the two previous contributions
I unreleased, used in-house
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RESULTS : ASSEMBLATHON 1 & 2

Assemblathon 1 [Earl et al. (incl. RC, DL, DN, GC, NM) 11]

I International competition
I Research teams are given a set of reads to assemble
I No knowledge of the solution, no preliminary ranking
I Synthetic genome, 100 Mb (1/30-th of the human genome)

Assemblathon 2
Unknown animal genomes, ≈ 1-2 Gb (half of the human genome)

Maylandia zebra Red tailed boa constrictor common pet parakeet
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QUALITY OF AN ASSEMBLY

I contigs : gap-less assembled sequences
I scaffolds : contigs separated by gaps

Fragmentation

NG50 : length l at which half of the genome is covered by sequences of
length ≥ l

NG50 = 2 NG50 = 6

I accuracy (many ways) and coverage (% of the genome covered)
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RESULTS : ASSEMBLATHON 1

Assemblathon 1
Contiguity of sequences (kbp) :

Method contig NG50 (rank) scaffold NG50 (rank)
Meraculous 16 (10) 9073 (1)
Allpaths 219 (2) 8396 (2)
.. .. ..
Monument 7 (13) 1421 (7)
.. .. ..
Cortex 3 (16) 9.3 (16)

Performance (reported by participants) (wall h, GB) :

Method Memory (rank) Time (rank)
Monument 6.3 (3) 2 (1)
Meraculous 4 (1) 6 (2)
.. .. ..
Allpaths ≈100 12
.. .. ..
Celera 100 120
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RESULTS : ASSEMBLATHON 2

For Assemblathon 1, we used :
I Prototype of Monument (without variants traversal)
I Single finishing step : scaffolding (SSPACE) [Boetzer 11]

What we changed for Assemblathon 2 :
I Variant sub-graph traversal [RC, DL 11]
I More elaborate finishing steps :

I scaffolding (SuperScaffolder) [RC, DN @ Jobim 12]
I gap-filling (SOAP) [Li et al. 09]

Assemblathon 2 (preliminary)

Snake (N50, kbp) :

Method ctg. (rank) scaf. (rank)
SGA 29 (4) 4505 (1)
Phusion 73 (1) 4066 (2)
.. .. ..
Monument 65 (2) 1149 (6)
.. .. ..
CLC 8 (11) 19 (11)
PRICE 6 (12) 6 (12)

Fish (N50, kbp) :

Method ctg. (rank) scaf. (rank)
Bayor 31 (1) 4966 (1)
Allpaths 20 (4) 4014 (2)
.. .. ..
Monument 31 (2) 1241 (6)
.. .. ..
SGA 8 (8) 110 (10)
Ray 9 (12) 47 (12)
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RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE

This is not in the manuscript.

de Bruijn graph [Idury, Waterman 95]

Nodes are k-mers, edges are (k− 1)-overlaps between nodes.

GAT ATT TTA TAC ACA CAA

Structurally similar to string graphs.

How to encode de Bruijn graphs using as little space as possible ?

Memory usage (illustration for human, k = 25)

I Explicit list of nodes : 2k · n bits 50 bits per node
I Self-information of n nodes :

log2

  
4k

n

!!
bits

20 bits per node.
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RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (2)

Bloom filter
Bit array to describe any set with a “precision” of ε.

I a proportion of ε elements will be wrongly included in the set.

First step : stores nodes in a Bloom filter.

node hash value
ATC 0
CCG 0
TCC 5
CGC 6
. . . . . .

Bloom filter
1
0
0
0
0
1
1
0
0
0

28/39



RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (3)

Actual set of nodes : {TAT,ATC,CGC,CTA,CCG,TCC,GCT}
Graph as stored in the previous Bloom filter :

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT
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RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (4)

Insight : using localized traversal from black nodes, only small a fraction of
the red false positives are troublesome.

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT
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RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (4)

Proposed method [RC, GR 11]

Store nodes on disk for sequential enumeration,
and in memory store the Bloom filter + the troublesome FP explicitly.

Bloom filter
1
0
0
0
0
1
1
0
0
0

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG
CCG

TTG
TCC

GCT

Nodes self-information :

dlog2

 
43

7

!
e = 30 bits

Our structure size :

10|{z}
Bloom

+ 3 · 6|{z}
Crit. false pos.

= 28 bits
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RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (5)

Result statement
The de Bruijn graph can be encoded using

1.44 log2(
16k
2.08

) + 2.08

bits of memory per node.
human, k = 25 : 13 bits per node.

I Effectively below the self-information (20 bits/node)
I Not magic : it’s an over-approximation made exact where it matters

Is it possible to perform assembly with this immutable structure ?
→ Yes, with localized traversal (Contribution 1).

Human genome assembly Minia C. & B. ABySS SOAPdenovo

Contig N50 (bp) 1156 250 870 886
> 95% Accuracy (%) 94.6 - 94.2 -

Nb of nodes/cores 1/1 1/8 21/168 1/40
Time (wall-clock, h) 23 50 15 33
Memory (sum of nodes, GB) 5.7 32 336 140
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YEAR 2012 : HOW COMPUTATIONNALLY HARD IS assembly
TODAY ?
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SUMMARY OF CONTRIBUTIONS

Contribution 1 :
I Redundancy-filtered reads index
I Localized assembly technique

Contribution 2 :
I Incorporation of pairing information in assembly models

Contribution 3 :
I Space-efficient de Bruijn graph representation

Contributions in the manuscript :
I Analysis of re-sequencing feasibility with exact paired reads
I Index-free targeted assembly (Mapsembler)
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PERSPECTIVES

Applications

Why assemble a human genome again ?
I To exhibit novel variations [Iqbal 11]
I As a benchmark, for the immense number of (meta)genomes that will be

sequenced next

Future of sequencing

Predictions :

DNA assembly Relevant until 10-100 kbp high-accuracy read lengths

RNA assembly, metagenomics and metatranscriptomics No announced
technology other than Illumina permits high depth of
sampling.

→ paired short-read assembly will remain a hot topic for at least a few years.
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PERSPECTIVES

Extension of localized assembly :
I Graph-based gap-filling (Monument, with T. Derrien, C. Lemaitre, & F.

Legeai)

Extension of paired assembly theory :
I Global scaffolding (SuperScaffolding, with D. Naquin)

common sub-paths that appear in all solutions of a Chinese Postman instance

Applications of Minia codebase :
I Huge metagenomic assemblies (with O. Jaillon, JM. Aury)
I Transcriptome assembly (Inchworm replacement)
I Alternative splicing detection (KisSplice module replacement)
I SNP detection (KisSnp 2, with R. Uricaru & P. Peterlongo)
I Read compression (with G. Rizk & D. Lavenier)
I Constant-memory k-mer counting (with G. Rizk)
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SOFTWARE CONTRIBUTIONS

Released software :
I Mapsembler1

I KisSplice2

I Minia3

On my github4 :
I Paired repetitions analysis package
I Light-weight, explicit de Bruijn graph construction

Internal software :
I Monument
I SuperScaffolder

1
http://alcovna.genouest.org/mapsembler

2
http://alcovna.genouest.org/kissplice

3
http://minia.genouest.org

4
http://github.com/rchikhi
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