Computational Methods for de novo Assembly of
Next-Generation Genome Sequencing Data

&:1RISA

Rayan Chikhi

ENS Cachan Brittany / IRISA (Genscale team)

Advisor : Dominique Lavenier

7=

uekh

s

c ACcC HAN

BRETAGNE

1/39

INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

“It’s a giant resource that will change mankind, like
the printing press.”

Dr James Watson, co-discoverer of DNA structure

2/39

INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

”It’s a giant resource that will change mankind, like
the printing press.”

Dr James Watson, co-discoverer of DNA structure

First achievement : human sequencing

> the only way to read DNA is through small fragments (called reads)

Sequencing process :

1) Obtain many copies of the genome

2) Cut them into millions of short fragments
3) Output the sequences of these fragments

genome
(unknown)

,\f : @ reads:
T \‘ L overlapping
DNA R 4;?' G sub-sequences,
R b covering

the genome
redundantly

2/39

INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

Second achievement :

3/39

INTRODUCTION, YEAR 2000 : HUMAN GENOME PROJECT

Second achievement : human de novo assembly (thesis topic)

» from millions of small fragments of DNA to a single sequence
» purely computational process

» required a supercomputer with 64 GB memory

» result was actually not perfect : assembly was fragmented

genome
(unknown)

reads:
overlapping
sub-sequences,
covering

the genome
redundantly

|

assembly
(what we think
the genome is)

3/39

CONTEXT, YEAR 2012 : STILL DIFFICULT TO SEQUENCE TODAY ?

4/39

CONTEXT, YEAR 2012 : STILL DIFFICULT TO SEQUENCE TODAY ?

Moore's Law

I I q
HHI““"'WHH National Human

il

il Genome Research
Institute

genome.gov/sequencingcosts

$1K

2001 2002 2003 2004 2005 2006 2007 2008

NEXT-GENERATION SEQUENCING TECHNOLOGIES

» NGS = massively parallel sequencing

3 main NGS technologies

4/ - o

Sange s S OLID I llumina Proton, PacBio, Oxford

HGP technology

i

5/39

NEXT-GENERATION SEQUENCING TECHNOLOGIES

» What everyone uses today :

3 main NGS technologies

HGP technology
—— |

-

Illumina

90 percent of the world’s sequencing output is produced on
ITumina instruments.

GenomeWeb, February 14, 2012 ; verified with http://omicsmaps.com/stats

read length | ~ 100 nt, i.e. 0.000003% of the human genome

throughput ‘ equivalent to 1 human genome per day

5/39

http://omicsmaps.com/stats

HOW COMPUTATIONALLY HARD IS assembly TODAY ?

Tentative comparison of some software methods :

350 -

Time (h) —3
300 Memory (GB)
250 -
200
150 +
100
50
0
Celera ABYySS SOAP SGA
(2000) (2009) (2009) (2012)

=2 20 de novo assemblers omitted.

Datasets : whole human genome, Illumina reads (except for Celera : Sanger reads)

» We focus on computational difficulty

> Quality of results : newer assemblies (> 2009) are much more
fragmented, because of shorter reads

6/39

OUTLINE

Definition of the assembly problem

Contributions

Contribution 1 : localized assembly
Index
Traversal

Contribution 2 : incorporation of pairing information
Monument assembler
Results

Contribution 3 : ultra-low memory assembly
Minia
Results

Perspectives

7/39

GENOME ASSEMBLY

Informal problem

Given a set of sequenced reads, retrieve the genome.

In computational terms

Find an algorithm such that :
Input : a set of reads that are sub-strings of the genome
Output : the genome

Toy example

Input : {GAT,ATT, TTA, TAC, ACA, CAT, CAA}
Output : GATTACATCAA

7/39

GENOME ASSEMBLY

Informal problem

Given a set of sequenced reads, retrieve the genome.

In computational terms

Find an algorithm such that :
Input : a set of reads that are sub-strings of the genome
Output : the genome

Toy example

Input : {GAT,ATT, TTA, TAC, ACA, CAT, CAA}
Output : GATTACATCAA

Immediate questions

Q : Is there a single possible output ?

A :no, s = GATTACATTACAA is another possible output
Q : Then, how to choose ?

A : need to formulate an optimization problem”

“optimization problem : problem of finding the best solution from all feasible solutions

7/39

SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,

construct a string of minimal length

which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT, TTA}
Trivial super-string : {GATATTTTA}
Super-strings of length 3 :

8/39

SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,

construct a string of minimal length

which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT, TTA}

Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none
Super-strings of length 4 :

8/39

SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,

construct a string of minimal length

which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT, TTA}

Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none
Super-strings of length 4 : none
Super-strings of length 5 :

8/39

SHORTEST COMMON SUPER-STRING PROBLEM

Shortest common super-string (SCS) problem

Given a set S of strings,

construct a string of minimal length

which contains all strings of S as sub-strings.
(there can be many solutions)

Toy example

S = {GAT,ATT, TTA}

Trivial super-string : {GATATTTTA}
Super-strings of length 3 : none

Super-strings of length 4 : none

Super-strings of length 5 : {GATTA} < solution

Problem with SCS-based assembly

The genome is not a SCS.

Genomes contain long repetitions, e.g. GATTACATTACAA (length = 13).
Sequencing yields reads : {GAT,ATT, TTA, TAC,ACA, CAT,CAA}
A shortest common super-string is : GATTACATCAA (length = 11).

8/39

A BETTER PROBLEM FORMULATION

Overlap graph (simplified definition) [Myers 95]
Directed graph,
» vertices = reads

> edge r; — 12 if r1 and r; exactly overlap over > k characters.

String graph

Remove transitively inferable overlaps from the overlap graph.

Toy string graph
S = {GAT,ATT, TTA, TAC, ACA, CAT, CAA} k=2

CAT

GAT wemgips ATT i TTA wmmmies TAC mmmmgps ACA mmgps CAA

GAT
ATT

9/39

ASSEMBLY USING AN STRING GRAPH

Assembly in theory [Nagarajan 09]

Return a path of minimal length that traverses each node at least once.

[llustration

For the previous example,
/_ CAT \
GAT ==3» ATT ==3» TTA ==3» TAC ==3 ACA =3 CAA

The only solution is GATTACATTACAA.
(Recall that SCS was GATTACATCAR)
— Graphs provide a good framework for assembly.

10/39

ASSEMBLY USING AN STRING GRAPH

Example of ambiguities

GAG —_— AGT —_— GTG

0 2

ACC

GAA ey AAT ey ATG

Assembly in practice

Return a set of paths covering the graph, such that all possible assemblies
contain these paths.

Solution of the example above

The assembly is the following set of paths :

{ACTGA, TGACC, TGAGTGA, TGAATGA}

11/39

ALMOST EVERY ASSEMBLY ALGORITHM
[Zerbino, Birney 08; Li et al. 09; Simpson et al. 12; ..]

Assembly graph with variants & errors

o /
. ///2‘.(::: - o —s — — ~
\./ 7

™~

1) The graph is completely constructed.
2) Likely sequencing errors are removed.
/.\ 7

— —

o~
\. P ~. -
3) Known biological events are removed.
4) Finally, simple paths are returned.

2—2—2—2
1%1—>1%1—>1/ Tt
~

3—38—38—3

12/39

Contributions

Contribution 1 : localized assembly

Index

Traversal
Contribution 2 : incorporation of pairing information

Monument assembler

Results
Contribution 3 : ultra-low memory assembly

Minia

Results

13/39

WHOLE-GENOME GRAPHS ARE UNNECESSARY

Practically

Genome graphs are a better framework than SCS,

but they
» are monolithic, hard to parallelize, and [Simpson et al. 09]
> require a lot of memory (human : 150+ GB). [Li et al. 09]

Contribution 1 : localized assembly

Proposed approach :

> Store reads in a
redundancy-filtered index

> Locally construct portions of the
graph at a time

14/39

CONTRIBUTION 1.1 : REDUNDANCY-FILTERED READ INDEX

» Store reads in a redundancy-filtered index [GC,RC, DL 11]

>

k-mers

ACT

CAG

reads containing di d fi redundancy filter
this k-rmar iscard prefixes in suffixes
(heuristics)

-~ ACTGAA ™

~ACTGAA ™,
/' GACTGA | i ACTGA | ACTGAA
i AGACTG | i ACTG i
. TAGACT / . ACT
CAGCT", T cAGeT
CCAGCT /' caccT
! ; s CAGCT
GCCAGC | | CAGC i o CaGATT
CAGATT | i CAGATT |
TTCAGA L CAGA
TTTCAG .~ CAG

15/39

REDUNDANCY-FILTERED READ INDEX : BENCHMARK

» Store reads in a redundancy-filtered index

>

70

60

50

40

30

20

10

Memory usage (GB) of indexes

. Our method -
s SOAPdenovo
[Velvet

o

E. coli N. crassa

Construction time
SOAP : 41 mins
us : 64 mins
16/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

» Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs
Won't traverse : long branches

|
—(- —(-
-»8S—> — — —t-> ->8 <
//I > — -0 -0 -
—> .
(min depth d)

(max breadth b, max depth d)

Example : Whole graph
7
™~

17/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

» Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs
Won't traverse : long branches

|
—(- —(-
-»8S—> — — —t-> ->8 <
> — -0 -0 -
—> .
(min depth d)

(max breadth b, max depth d)

Example : Start with an empty graph

17/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

» Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs

Won't traverse : long branches
—

—(- —(-
-»8S—> — — —t-> ->8

~

- = > -

(min depth d)

—

(max breadth b, max depth d)

Example : Construct the first portion

-
N
o=~

17/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

» Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs

Won't traverse : long branches
—

—(- —(-
-»8S—> — — —t-> ->8

~

- = > -

(min depth d)

—

(max breadth b, max depth d)
Example: Construct the second portion

//)()——» — — ~
~

-
N
o=~

17/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

> Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs

Won't traverse : long branches
oy
4 — (- -0 >
-¥8 = = = =t - ->8S
S —0—0—0-
- (min depth d)
(max breadth b, max depth d)

Example: Construct the third portion

17/39

CONTRIBUTION 1.2 : LOCALIZED TRAVERSAL

>

» Locally construct portions of the graph, according to these rules :

Will traverse : variant sub-graphs

Won't traverse : long branches
-
4 — (- -0 >
-8 — = =l =t - ->8
S —0—0—0-
- (min depth d)
(max breadth b, max depth d)

Example: Construct the third portion

Summary of Contribution 1 :
greedy, localized assembly = whole-genome graph assembly

17/39

OUTLINE

Contribution 2 : incorporation of pairing information
Monument assembler
Results

18/39

PAIRING INFORMATION
A vision of sequencing closer to reality is :

genome
(unknown)

l

paired reads - '— e

Sequencing a toy genome with paired reads of length 4 nt (with gaps of
length 2).

Genome 2?72?22?22?222?2227?
ACTA—GATA
AGAG—ACCT
CTAG—ATAC
TAGA—TACC

In practice :
» read length ~ 100 nt
» depending on seq. method, gaps are 0, 300, 2000 or 10000 nt.

18/39

CONTRIBUTION 2 : STUDYING THE IMPACT OF PAIRING
INFORMATION

Reads that belong to multiple genome locations complicate analysis.
Pairing information contributes to uniquely localize reads.

E. coli H. sapiens

100 ‘ ————— 100 pr—r e

75 r ,"/ b B 7
g { /
1]
o i i
I H i
© 50 i 1 50 - : 1
o / !
3
g
c
= T

5 i/ 1 25 1

paired
unpaired -------=
0 - ' 0 /oy L L L
5 10 15 20

20 40 60 80 100

Read length (nt) Read length (nt)

In this figure, paired reads are separated by (300 — 2 - [read length]) nt.

19/39

CONTRIBUTION 2 : INCORPORATING PAIRING INFORMATION
IN ASSEMBLY

You are asked to solve one of these two jigsaws. Which one looks easier ?

%ﬁm

20/39

CONTRIBUTION 2 : INCORPORATING PAIRING INFORMATION
IN ASSEMBLY

You are asked to solve one of these two jigsaws. Which one looks easier ?

%W

Both are equally hard (NP-hard). [Demaine 07], [RC, DL 11]

We defined the following problems, and showed their NP-hardness :
» SCS over paired strings

v

paired Hamiltonian path

v

super-walk in a de Bruijn graph over paired strings

v

paired Assembly Problem (introducing paired string graphs)

20/39

CONTRIBUTION 2 : PAIRED STRING GRAPHS

Recall that long branches cannot be traversed

_}s/—>—>—>—>
~

—O—0—-0)->

Now, add pairing information to the graph (paired string graph) :

— = > -
-8
— = t—- ->»

"

In actual data, pairing is incomplete, with varying distance between mates.

Will traverse : pairs-linked simple paths (heuristics)

- = = =

—81—>S8—S3— — —h—ohot3—oti—

21/39

IMPLEMENTATION : MONUMENT ASSEMBLER

Pairs-linked simple paths Variant sub-graphs

» de novo genome assembly software for Illumina reads
» 8,000 lines of Python + 5,000 lines of C code

proof of concept of the two previous contributions

v

» unreleased, used in-house

22/39

RESULTS : ASSEMBLATHON 1 & 2

Assemblathon 1 [Earl et al. (incl. RC, DL, DN, GC, NM) 11]
> International competition

> Research teams are given a set of reads to assemble

\4

No knowledge of the solution, no preliminary ranking
Synthetic genome, 100 Mb (1/30-th of the human genome)

v

Assemblathon 2

Unknown animal genomes, ~ 1-2 Gb (half of the human genome)

Maylandia zebra Red tailed boa constrictor common pet parakeet

23/39

QUALITY OF AN ASSEMBLY

> contigs : gap-less assembled sequences
» scaffolds : contigs separated by gaps

Fragmentation

NG50 : length [at which half of the genome is covered by sequences of
length > I

toy genome size =10

1 1 2 6 - 2

NG50 =2 NG50 =6

» accuracy (many ways) and coverage (% of the genome covered)

24/39

RESULTS : ASSEMBLATHON 1

Assemblathon 1
Contiguity of sequences (kbp) :

Method contig NG50 (rank) | scaffold NG50 (rank)
Meraculous | 16 (10) | 9073 (1)
Allpaths 219 (2) | 8396 2)
Monument | 7 (13) | 1421 (7)
Cortex 3 (16) | 9.3 (16)

Performance (reported by participants) (wall h, GB) :

Method Memory (rank) | Time (rank)
Monument | 6.3 3|2 (1)
Meraculous | 4 @6 (2)
Allpaths ~100 12

Celera 100 120

25/39

RESULTS : ASSEMBLATHON 2

For Assemblathon 1, we used :
» Prototype of Monument (without variants traversal)
» Single finishing step : scaffolding (SSPACE)

What we changed for Assemblathon 2 :
» Variant sub-graph traversal

» More elaborate finishing steps :
> scaffolding (SuperScaffolder)
> gap-filling (SOAP)

Assemblathon 2 (preliminary)

[Boetzer 11]

[RC, DL 11]

[RC, DN @ Jobim 12]

[Li et al. 09]

Snake (N50, kbp) : Fish (N50, kbp) :
Method ctg. (rank) | scaf. (rank) Method ctg. (rank) | scaf. (rank)
SGA 29 (4) | 4505 (1) Bayor 31 (1) | 4966 (1)
Phusion 73 (1) | 4066 (2) Allpaths 20 4) | 4014 (2
Monument | 65 2 | 1149 (6) Monument | 31 2) | 1241 (6)
CLC 8 (11) | 19 (11) SGA 8 8) | 110 (10)
PRICE 6 (12) | 6 (12) Ray 9 (12) | 47 (12)

26/39

OUTLINE

Contribution 3 : ultra-low memory assembly
Minia
Results

27/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE

This is not in the manuscript. ‘

de Bruijn graph [Idury, Waterman 95]

Nodes are k-mers, edges are (k — 1)-overlaps between nodes.

GAT ==3» ATT ==3» TTA ==3» TAC ==3 ACA =3 CAA
Structurally similar to string graphs.
How to encode de Bruijn graphs using as little space as possible ?

Memory usage (illustration for human, k = 25)

» Explicit list of nodes : 2k - n bits 50 bits per node
» Self-information of # nodes :

()

20 bits per node.

27/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (2)

Bloom filter
Bit array to describe any set with a “precision” of e.

> a proportion of e elements will be wrongly included in the set.

First step : stores nodes in a Bloom filter.

Bloom filter
1
node | hash value / 0
ATC 0 0
cCG 0 :
TCC 5 _
CGC 6 1
0
0
0

28/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (3)

Actual set of nodes : {TAT,ATC,CGC,CTA, CCG, TCC,GCT}
Graph as stored in the previous Bloom filter :

S

?

A
:
:

29/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (4)

Insight : using localized traversal from black nodes, only small a fraction of
the red false positives are troublesome.

30/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (4)

Proposed method [RC, GR 11]

Store nodes on disk for sequential enumeration,
and in memory store the Bloom filter + the troublesome FP explicitly.

Bloom filter }E@
1

0 CCO GAG
0 G e
0 CGAD
0 CCS
1 / CD
1
0 Cﬁé
0 (TAD
0 QAT QATD
Nodes self-information : Our structure size :
) 4 30bi 10+ 3:6 = 28 bits
[Og2 7] - 1ts Bloom Crit. false pos.

31/39

RECENT IMPROVEMENT : LOWER-MEMORY STRUCTURE (5)

Result statement

The de Bruijn graph can be encoded using

1.44 logz(%) +2.08

bits of memory per node.

human, k = 25 : 13 bits per node.

» Effectively below the self-information (20 bits/node)
» Not magic : it’s an over-approximation made exact where it matters

Is it possible to perform assembly with this immutable structure ?
— Yes, with localized traversal (Contribution 1).

Human genome assembly Minia C.&B. ABySS SOAPdenovo

Contig N50 (bp) 1156 250 870 886
> 95% Accuracy (%) 94.6 - 94.2 -

Nb of nodes/cores 1/1 1/8 21/168 1/40
Time (wall-clock, h) 23 50 15 33
Memory (sum of nodes, GB) 5.7 32 336 140

32/39

YEAR 2012 : HOW COMPUTATIONNALLY HARD IS assembly
TODAY ?

350 -
Time (h) C—3
300 + - Memory (GB)
250
200

150

100 -

Celera ABySS SOAP Monument SGA Minia
(2000) (2009) (2009) (2011) (2012) (2012)

33/39

SUMMARY OF CONTRIBUTIONS

Contribution 1 :
» Redundancy-filtered reads index

» Localized assembly technique

Contribution 2 :

» Incorporation of pairing information in assembly models

Contribution 3 :

> Space-efficient de Bruijn graph representation

Contributions in the manuscript :
» Analysis of re-sequencing feasibility with exact paired reads

> Index-free targeted assembly (Mapsembler)

34/39

PERSPECTIVES

Applications
Why assemble a human genome again ?
» To exhibit novel variations [Igbal 11]

> As a benchmark, for the immense number of (meta)genomes that will be
sequenced next

Future of sequencing
Predictions :
DNA assembly Relevant until 10-100 kbp high-accuracy read lengths

RNA assembly, metagenomics and metatranscriptomics No announced
technology other than Illumina permits high depth of
sampling.

— paired short-read assembly will remain a hot topic for at least a few years.

35/39

PERSPECTIVES

Extension of localized assembly :

» Graph-based gap-filling (Monument, with T. Derrien, C. Lemaitre, & F.
Legeai)

Extension of paired assembly theory :
» Global scaffolding (SuperScaffolding, with D. Naquin)

common sub-paths that appear in all solutions of a Chinese Postman instance

Applications of Minia codebase :

» Huge metagenomic assemblies (with O. Jaillon, JM. Aury)
» Transcriptome assembly (Inchworm replacement)
> Alternative splicing detection (KisSplice module replacement)
» SNP detection (KisSnp 2, with R. Uricaru & P. Peterlongo)
» Read compression (with G. Rizk & D. Lavenier)
» Constant-memory k-mer counting (with G. Rizk)

36/39

SOFTWARE CONTRIBUTIONS

Released software :

» Mapsembler"

> Kis.Splice2

» Minia®
On my github* :

> Paired repetitions analysis package

> Light-weight, explicit de Bruijn graph construction
Internal software :

» Monument

» SuperScaffolder

1
http://alcovna.genouest.org/mapsembler
2 . .
http://alcovna.genouest.org/kissplice
3
http://minia.genouest.org
4

http://github.com/rchikhi

37/39

http://alcovna.genouest.org/mapsembler
http://alcovna.genouest.org/kissplice
http://minia.genouest.org
http://github.com/rchikhi

>

>

PUBLICATIONS

WABI 2011

PBC 2011

BMC Bioinformatics 2011
Genome Research 2011
RECOMB-Seq 2012
WABI 2012

Extended abstracts, posters :

>

>

BMC Bioinformatics, ISCB-SC 2009
Jobim 2012

RC, DL

GC,RC, DL

PP, RC

Earletal. (RC, DL, DN, GC, NM)
Sacomoto et al. (RC, RU, PP)

RC, GR

RC, DL
RC, DN

38/39

v

v

v

ACKNOWLEDGMENTS

Dominique Lavenier

Everyone at Symbiose, GenScale, GenOuest, Dyliss
Pierre asked for a special dedicace

M-F. Sagot, S. Gnerre, O. Jaillon, E. Rivals, B. Schmidt
My family, D.

Thank you all for coming!

39/39

	Definition of the assembly problem
	Contributions
	Contribution 1: localized assembly
	Contribution 2: incorporation of pairing information
	Contribution 3: ultra-low memory assembly

	Perspectives

