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Forewords

This document is a “Habilitation & diriger les Recherches” (HdR), which can be
described as a thesis that is written 6-10 years after one’s PhD thesis. It is manda-
tory in the French system to write and defend such a thesis in order to be allowed
to supervise PhD students without (the sometimes virtual implication of) a more
senior colleague, and to apply to certain types of jobs such as University Professor
or Research Director. Whether the writing of this traditional rite of passage is a
productive allocation of research time is up for debate.

Unlike a regular thesis, an HdR does not contain new unpublished research.
The rules of writing it vary among universities, but it is generally supposed to be
the retelling of previous works. For Sorbonne Université, it is: “la synthése et les
perspectives des travaux du candidat d’environ 50 pages (hors les articles joints).”
As all my articles are available in open-access either on arXiv, bioRxiv, and/or as a
PDF on my personal web page (http://rayan.chikhi.name), I will not be joining
any article along with this document.

This document will retrace some of the research endeavors I did since my PhD
thesis in 2012. It will have an apparence of a survey yet it will be biased towards
my contributions (marked as dots symbols in the left margin) and their immediate
scientific neighborhood. Thus, it should not be treated as an unbiased or exhaustive
survey of the state of the art.


http://rayan.chikhi.name
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Summary (English)

Bioinformatics is a relatively young research field concerned with applying com-
putational techniques to biology. In this context, I will focus more specifically on
algorithms that take as input DNA sequencing data, i.e. short fragments of DNA.

In the first Chapter of this document I relate the tale of how the community and
myself have investigated efficient data structures for storing and representing DNA
sequencing data, which has had widespread applications throughout sequence bioin-
formatics. Specifically, I will focus on the representations of k-mer data structures
and de Bruijn graphs. They are closely tied to the problem of genome assembly, i.e.
the reconstruction of an organism’s chromosomes using a large collection of overlap-
ping short fragments. I start by highlighting this connection, noting that assembling
genomes is a computationnally intensive task, and then focus our attention on the
reduction of the space taken by de Bruijn graph data structures. This Chapter
is a retrospective centered around my own previous work in this area. It comple-
ments a recent review [CHM19] by providing a less technical and more introductory
exposition of a selection of concepts.

In the second part, I present a selection my other contributions to bioinformat-
ics, and attempt to classify them into two types of ‘meta’ research, based on their
relation to the state of the art. I will present in an intuitive fashion the following
works: REINDEER for indexing large amounts of samples, BBHash for construct-
ing minimal perfect hash functions, BCALM?2 for constructing compacted de Bruijn
graphs; pugz for decompressing gzip files in parallel; Minia for representing de Bruijn
graphs efficiently.

Finally, I will conclude with some perspective on my future research directions.



CONTENTS

- 10 -



Résumé (French)

La bioinformatique est un domaine de recherche relativement jeune qui s’intéresse
a lapplication de techniques informatiques a la biologie. Dans ce contexte, je
m’intéresserai plus particulierement aux algorithmes qui prennent en entrée des don-
nées de séquencage d’ADN, c’est-a-dire des courts fragments d’ADN.

Dans le premier chapitre de ce document, je raconte comment la communauté
et moi-méme avons investigué des structures de données efficaces pour stocker et
représenter les données de séquencage de ’ADN, qui ont eu de nombreuses appli-
cations en bioinformatique des séquences. Plus précisément, nous nous concentrons
sur les représentations des structures de données k-mer et les graphes de de Bruijn.
Ils sont étroitement liés au probleme de I’assemblage du génome, c’est-a-dire la re-
construction des chromosomes d’un organisme a 1’aide de une grande collection de
fragments courts qui se chevauchent. Nous commencons par souligner cette con-
nexion, notant que 'assemblage des génomes est une tache de calcul intensif, puis
concentrer notre attention sur la réduction de I’espace pris par le graphe de de Bruijn.
Ce chapitre est une rétrospective centrée sur mes propres travaux antérieurs dans
ce domaine. Il compléte une revue récente [CHM19] en fournissant une exposition
moins technique et plus introductive d’une sélection de concepts.

Dans la deuxiéme partie, je présente une sélection de mes autres contributions
a la bioinformatique, et tente de les classer en deux types différents de « méta »
recherche. Je présenterai de fagon intuitive les ouvrages suivants : REINDEER pour
I'indexation de grandes quantités d’échantillons, BBHash pour la construction de
fonctions de hachage parfaites minimales, BCALM2 pour la construction de graphes
de Bruijn compactés ; pugz pour décompresser les fichiers gzip en paralléle ; Minia
pour représenter efficacement les graphes de de Bruijn.

Enfin, je conclurai par quelques perspectives sur mes futures orientations de
recherche.
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Chapter 1

A tale of optimizing the space
taken by de Bruijn graphs

1.1 Context

Back when I started a PhD in bioinformatics in 2008, my advisor Dominique Lavenier
told me about a relatively new problem consisting in reconstructing genomes using
DNA sequencing, termed de novo genome assembly. It was a somewhat “fresh” prob-
lem at the time: many genomes were already assembled, e.g. the Human Genome
Project completed at the beginning of the 2000s, yet performing the assembly of
any organism was just starting to be within reach for most biological labs. The
vast majority of organisms did not have their genomes assembled (and as of today:
they still do not). So the challenge was to create software that any individual lab
could use, not just large organizations. The main type of data at the time were
short reads, i.e. fragments of around 100 nucleotides, meaning that only a tiny frac-
tion of a genome could be read contiguously at a time. (Genomes of viruses are
in the order of thousands of nucleotides, but for most other organisms they range
from millions to billions.) By repeatedly sequencing fragments from random loca-
tions, reads would significantly overlap which makes genome reconstruction possible.
Short reads were produced mainly from the company Illumina, still a market leader
on DNA sequencing today; some of the previous technologies (e.g. 454) were on
their way out.

The EULER-SR assembler was one of the first specialized genome assembly
software for short reads, and it came out in 2008. It achieved an assembly of a
bacterium (E. coli) in 199 pieces [CP08]. This means that the genome was near-
completely reconstructed, yet in a fragmented way to due ambiguities. This may
seem unremarkable by current standards, as nowadays we can reconstruct nearly
all bacteria in a single piece per chromosome. Yet the task was fundamentally
hindered by the length of the short reads. Still, at the time it was clear that the
next frontier would be to assemble larger genomes, e.g. animals or plants, even if
the final assembly would still be largely fragmented.

The widely-used Velvet [ZB08], ABySS [SWJT09] and SOAPdenovo [LZR™10]
assemblers appared in the following two years. And indeed, the last two were able to
assemble a human genome using a cluster or a single large-memory machine. These
assemblers were all based on a certain representation of the input data, the de Bruijn
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Chapter 1. A tale of optimizing the space taken by de Bruijn graphs

graph, that we will explain in the next section. These graphs come from mathematics
and had not yet been widely used outside of some networking applications. This was
before the era of more advanced assemblers (IDBA/SPAdes [PLYC10, BNAT12));
early assemblers only constructed a single graph, as opposed to iterating over mul-
tiple graphs with different parameters.

Even so, the construction of a large de Bruijn graph was the most computation-
intensive step of genome assembly at the time. This should come as no surprise,
as 1) this was the first period in history when one had to construct large de Bruijn
graphs in any domain; there existed no previous litterature describing how to do
it efficiently, and no software library. 2) It did not matter so much if construction
was slow or memory-intensive, as long as some large-memory machine managed to
run it. 3) The volume of input data was really large by historical standards: in
the order of a hundred of gigabytes in compressed form. Yet, as genome assem-
bly later became a routine task, along with the advent of huge instances such as
metagenomics (the analysis of multiple genomes at once), the efficient construction
de Bruijn graphs naturally became a critical aspect of genome assembly. It also
turns out that de Bruijn graphs would be useful for other biological sequence anal-
ysis tasks, such as the sequencing of RNA [PDL*17], the compression of genomic
data [HWSH17], and the detection or representation of variations across a single or
multiple genomes [ENST20].

The goal of this chapter is to retrace some of the steps that the community and I
took towards achieving space-efficient representations of de Bruijn graphs, starting
from the initial attempts in the first assemblers, making a detour through theoretical
lower bounds, and finishing with current advances and some perspectives.

1.2 Problem formulation

Let us introduce some of the concepts. A DNA sequence is seen as a string over
four possible characters (A,C,T,G). A k-mer is a portion of DNA sequence of length
k, e.g. ACT is a 3-mer. The de Bruijn graph is a directed graph where nodes are
k-mers, and edges are the exact suffix-prefix overlaps of length £ — 1 between two
nodes; e.g. ACT—CTA or AAA—AAT, but ACT and AAA are not connected by
an edge. See Figure 1.1 for another example. Note that in practice, k is typically
greater than 20. A de Bruijn graph is constructed by inserting all the possible k-
mers present in an input dataset. If the same k-mer is seen multiple times, all of its
occurrences are associated to the same node.

The scientific question we will be interested in this Chapter can be informally
stated as follows: given a set of nodes of the de Bruijn graph, stored on disk, con-
struct an in-memory representation' that supports a reasonable subset of standard
graph operations, e.g. determine all the neighbors of a node, determine if some puta-
tive node is present or absent, etc. The representation should take as little memory
as possible, and answer queries reasonably fast, although as we will see next, the
main limiting factor here is typically not the query time but the representation size.

Note that prior to circa 2012, the problem as stated above was not recognized

1Such a representation is also often called a data structure, and the abstract model that encom-
passes all the data structures supporting the same operations is called an abstract data type.
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1.3. Caveats

Reference ACTGAGTACCATGGAC

genome GGAC ~ ACTG
CTGA
TGGA
Sequenced ACTGAGTAC / >EAG
reads CTGAGTACCAT arde \
GAGTACCATGGAC T de Bruijn -
k ACTG TACC GGAC e graph /
-mers
CTGA ACCA %CAT AGTA
TGAG CCAT
GAGT CATG ‘\ACCA‘TACCA/GTAC
AGTA ATGG
GTAC TGGA

Figure 1.1: Left panel: example of a toy reference genome sequence, a set of 3
sequenced reads, and the corresponding 4-mers extracted from the reads. Right
panel: the de Bruijn graph constructed these reads with £ = 4 and drawn using a
circular layout.

as its own area of investigation within bioinformatics nor computer science. Ar-
guably it became one when several data structures were published as stand-alone
articles [CB11, CR13, BOSS12].

1.3 Caveats

We will focus here on only a selection of major milestones, where space usage was
reduced, ignoring other features such as query times. The presentation will also
sacrifice some technical accuracy in favor of accessibility. For a more complete and
technical exposition, please refer to this review [CHM19).

Note that genome assembly cannot be reduced to the representation of the de
Bruijn graph. In fact, many older tools even used different paradigms [MKS10].
Among those which do use a de Bruijn graph, they implement many steps before
(e.g. error correction) and after (e.g. graph cleaning) the construction of the graph
that crucially affect results quality. However, for the sake of keeping the story
coherent, we will set aside this broader environment to focus solely on the efficiency
of graph representation.

1.4 The early days

The early assembly programs from the 2008-2010 era did not particularly aim to
optimize the space usage of de Bruijn graphs. Therefore, their memory usage may
be seen as wasteful by current standards, yet they laid the bases for future progress.

The EULER-SR assembler reported building the graph using what they describe
as “an efficient hashing structure” which was then transformed into a sorted list of
vertices, queried using binary search. Notably, k-mers were represented explicitly as
strings.?

2The total space usage of the graph was reported to be O(L) * (v + k) bytes, where L is the
genome size, k is the k-mer length and v is the memory allocated per vertex, reported to be 40
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Chapter 1. A tale of optimizing the space taken by de Bruijn graphs

Similarly the Velvet assembler, published the same year, used a hash table to
record for each k-mer “the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read”. It is natural to want to keep
track of where each k-mer is coming from, however as we will see next, storing this
information in the graph is prohibitively expensive. The authors note: “The main
bottleneck, in terms of time and memory, is the graph construction. The initial
graph of the Streptococcus reads needs 2.0 [gigabytes] of RAM.” Given that the
Streptococcus genome is 2 million nucleotides in length, and under the assumption
that there were roughly 10x more erroneous k-mers than correct ones, we infer that
the de Bruijn graph representation of Velvet required in the order of 100 bytes per
k-mer.

The SOAPdenovo assembler followed the Velvet assembler strategy, except that
its authors realized that one could achieve nearly identical (or even better) results
despite discarding a lot of space-intensive information in the hash table (i.e. read
locations and paired-end information). Its graph representation required 120 GB of
memory for storing 5 billion nodes of a human genome [MKS10], i.e. around 24 bytes
per k-mer. This prowess demonstrated that the quality of genome assembly was not
sacrified when trimming down the de Bruijn graph data structure. There existed
some minimal set of supported operations that would make a de Bruijn graph fit
for purpose, although this set was not described at the time. As long as a data
structure would support all these features, then computer scientists would be free
to optimize it as much as they could.

The Meraculous assembler, published in 2011, took a radically different approach
by storing the de Bruijn graph using collision-free hashing. Its representation only
supports the lookup of the next nucleotide following a k-mer (i.e. the out-neighbor
of a node), where k-mers having multiple out-neighbors were previously discarded
during a pre-processing step. As in other assemblers, there are further steps taken to
attempt to “fill the gaps” between the discarded k-mers and to orient the assembled
fragments, yet these are outside our current scope. The Meraculous de Bruijn graph
structure does not support enumeration of vertices. Despite the apparent minimality
in terms of supported operations, it appeared to be sufficient for enabling genome
assembly. While this technique was not further re-used by other assembly tools,
we revisited it 6 years later to develop the general-purpose minimal perfect hashing
library BBHash [LRCP17].

1.5 The birth of a line of research

The years 2011-2012 saw a remarkable amount of independent contributions propos-
ing new ways to represent the de Bruijn graph in a space-efficient manner. In retro-
spect, the field was ripe for such contributions as there was an important problem
to be solved (genome assembly of human genomes was taking a prohibitive amount
of memory), which was well-defined computationally®, and there were no previous
"clever" solutions apart from using off-the-shelf data structures.

bytes.
3 At least implicitly, as to my knowledge, it has not been explicitly formulated as an open question
in an article.
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1.6. Beating the lower bound (by inexactness)

To my knowledge, the first article on this topic was published in 2011 by T.
Conway and A. Bromage [CB11]. They describe an encoding of the de Bruijn graph
using an existing state-of-the-art efficient encoding of bit arrays. Furthermore, they
also show that their representation is ’optimal’, in the following sense: information
theory dictates that any other exact de Bruijn graph representation will have to
use as many bits per k-mer in the worst case. The key words of the previouse
sentence are “exact” and “worst case”, and we will revisit this statement later in
this document. But for now, it is sufficient to note that to this date, the Conway-
Bromage data structure is provably optimal. Then, does this mark the end of the
line of research on the representation of de Bruijn graphs?

Not quite, despite the lower bound argument being convincing. We will briefly
expose it here. Observe that to represent a de Bruijn graph, one only needs to
represent its vertices*. The edges are indeed implicit in the representation, as one
could determine all the neighbors of a certain k-mer by querying for the presence of
all the potential k-mers shifted to the left or to the right.

Then, a bijection is established between the set of all possible sets of n vertices,
and the set of all possible binary vectors having n ones and 4 — n zeros. The
bijection is actually rather straightforward: each k-mer is directly encoded as an
integer in base 4 (see Figure 1.2 middle panel), and a bit vector has a 1 at position
1 if and only if 7 is the encoding of a k-mer that belongs to the set of graph vertices.
Since the number of possible bit vectors is classically known, one deduces that to
represent a de Bruijn graph for a certain parameter k having n vertices, one must
uses in the worst case as many bits as the logarithm of the number of possible bit
vectors of size 4¢ that have n ones.

1.6 Beating the lower bound (by inexactness)

As it turns out, this lower bound did not discourage researchers from proposing data
structures with even lower space usage than dictated by the bound. Although this
seems impossible, we are about to see why it is not. One such data structure is
the encoding of a de Bruijn graph using a Bloom filter by Pell et al [PHCK™'12]
(Fig 1.2). By inserting all the vertices of the graph inside a probabilitic membership
data structure (here, the Bloom filter), it is possible to represent a set of k-mers
approximatively. With a trade-off: the graph is not exactly represented, yet the
space usage is an order of magnitude lower than the one dictated by the Conway-
Bromage lower bound: around 4 bits per k-mer. Pell et al showed that despite
having many false positive nodes resulting from the approximate representation,
it was still possible to perform useful analysis on the graph — not quite genome
assembly, but another related task (read partitioning).

Following this, G. Rizk and I proposed to extend this representation to make it
exact within a certain setting, and perform genome assembly [CR13]. Due to the
lower bound, any attempt at removing all the false positives of the Bloom filter
would result in a data structure that would necessarily be at least as large as the

4We omit a technicality here that will only be of interest to specialists. We only consider node-
centric de Bruijn graphs. For edge-centric de Bruijn graphs, the argument stated in this paragraph
does not apply. Yet, edge-centric graphs are tightly related to node-centric ones and in practice,
using one definition or the other does not matter.
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Exact encoding of the de Bruijn graph using a hash table

de Bruun graph k g -~ T nodes bits/node
TG g Hash tabl ax4 28 bit
) 5 AC — 2 5 ash table = its
AC —CT 7 TG AC E LI\(( o6
o 2 LT load factor
CT 7.
Exact encoding of the de Bruijn graph using a bit vector
A=00b G=10b
c=01b T=11b [0100000100001010] ‘ 16 bits ‘
AC=0001b TG=1110b
CT=0111b rA=1100b

Approximate encoding of the de Bruijn graph using a Bloom filter

TG
CT AC 1T
| cC :
T hach function ] ~ TG ‘ i ‘
! as| }unct|on/ AC —CT Vel 9 bits
Bloom filter [001010010] >

- /
e
-
-

Figure 1.2: Example of a de Bruijn graph (top left panel) and three possible en-
codings. Top right panel: hash table, each node is inserted at a position given
by a random hash function. The collision between TG and AC is resolved using
linear probing, i.e. by inserting AC at the next free slot in the table. The load
factor is number of occupied cells over total cells. Middle panel: bit vector, storing
each node converted into an integer using the classical binary encoding of characters
A,C,G,T=00b,01b,10b, 11b, where b indicates that the number is written in binary.
Bottom panel: Bloom filter, where each node is inserted at a position given by a
random hash function. Two false positives nodes (CC, AG) are shown in red. They
arise because the hash function causes collisions between any possibly existing node
and true nodes.
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1.7. Beating the lower bound (by instance specificity)
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Figure 1.3: Space taken by various representations of de Bruijn graphs, in bits per
node. “Conway-Bromage” is both the Conway-Bromage exact lower bound and its
matching upper bound. "Nav. lower bound" is the navigational lower bound for
general de Bruijn graphs from [CLJ"14]. BOSS is the flavor of [LLLT15].

one from Conway-Bromage. The key insight was to realize that only a fraction
of the false positives of the Bloom filter mattered: those which were neighbors of
a true positive vertex. By explicitly storing them in a “blacklist” hash table, our
data structure managed to represent a graph in typically ~ 13 bits per k-mer”, and
the neighbor query operation would be exact. This “beats” the Conway-Bromage
bound by a factor of roughly 2x. The caveat is that the representation is not exact
everywhere, but as long as a user traverses the graph from a true positive vertex,
then the representation would act identically to the exact one. We implemented this
data structure inside a genome assembler, Minia [CR13].

Another instance of an inexact de Bruijn graph representation is the sparse de
Bruijn graph [YMCT12], which is a de Bruijn graph that skips g intermediate k-
mers, providing roughly a 1/g space saving, where g was set to 16. Finally, along the
same line of thought the A-Bruijn graph formalism [LYK ™ 16] selects an arbitrary set
of strings, and creates an edge when two strings appear consecutively in at least one
read. This concepts generalizes de Bruijn graphs; yet A-Bruijn graphs may contain
one or several orders of magnitude less nodes than de Bruijn graphs. There are
some potentially interesting parallels between A-Bruijn graphs and sparse de Bruijn
graphs, yet to the best of my knowledge they have not been explored.

1.7 Beating the lower bound (by instance specificity)

Independently of Minia, and presented at the same session of the WABI conference
in 2012, the BOSS data structure proposes a completely different yet exact de Bruijn
graph representation [BOSS12]. It uses a variant of the Burrows-Wheeler transform
specifically tailored for k-mers. A complete description of the BOSS structure, or
even the Burrows-Wheeler transform, would be beyond the technical level of this
document, and can be found in [AKP*20]. Intuitively, the Burrows-Wheeler trans-
form [BW94] is a permutation of the characters of a string that facilitates substring
search and compression. BOSS extends this concept by storing a permutation of
the last characters of each k-mer® together with a bit array. The result is a data

SWhich would later be improved by Sahlikov & Kucherov to ~ 8.5 bits per k-mer, using cascading
Bloom filters [SSK14].

Salong with some additional artificial k-mers to “pad” those which do not have a large enough
neighborhood.
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Chapter 1. A tale of optimizing the space taken by de Bruijn graphs

structure that supports efficient membership queries and neighborhood traversal of
the graph, all in around 6 bits per k-mer in practice. While in the first few years the
construction of this structure was relatively impractical, recent improvements lifted
those limitations, allowing to process even terabases of input data [KMD™20].

Taking a step back, BOSS is an exact representation that appears to somehow
beat the Conway-Bromage lower bound. How is this even possible? While this
aspect was not discussed in nearly all of the publications related to BOSS, it turns
out that BOSS has been mainly applied to k-mer sets that have a so-called spectrum-
like property [CHM19], i.e. where all the k-mers originate from some underlying long
strings. Should BOSS be applied to an arbitrary set of k-mers, its space usage would
mechanically be raised to match or exceed the Conway-Bromage lower bound; yet,
this fact has to my knowledge never been properly tested in practice.

Regardless, the spectrum-like property and the effectiveness of BOSS are impor-
tant insights: a data structure may do better than the worst-case lower bound while
still remaining exact, when it is restricted to a certain class of inputs that matter in
practice. Then, a natural next question arises: what would be a more realistic lower
bound for representing ’practical’ de Bruijn graphs, i.e. those having spectrum-like
property?

Several collaborators and I addressed this question in [CLJ*14], where we for-
mulated several concepts. First, we defined a navigational data structure as one
that enables navigation in the graph but does not necessarily support membership
queries. We showed that navigational data structures for general de Bruijn graphs
require at least 3.24 bits per k-mer in the worst case. When restricted to the family
of linear de Bruijn graphs (i.e. graphs where all nodes have a single in-neighbor
and/or single out-neighbor), then a lower bound for navigational data structures
is 2 bits per k-mer. This last lower bound is tight, as representing the linear de
Bruijn graph using the Burrows-Wheeler transform (or its optimized flavor, FM-
index [FMO0O]) yields also a data structure that is asymptotically close to 2 bits per
k-mer. In [CLJ"14], we also proposed a new data structure for de Bruijn graphs hav-
ing the spectrum-like property, using the Burrows-Wheeler transform, and showed
that it takes 2+ (k+2)c/n bits per k-mer, where c is essentially the maximal number
of k-mer-disjoint strings the k-mers could have been generated from’.

Lastly, one may also wonder how a de Bruijn graph could be further compressed,
e.g. to be stored on disk. Supposedly such a compressed representation would be
even smaller than the previously mentioned data structures. The trade-off is the
inability to perform fast queries. Two independent works [BBK20, RCM20], one on
stmplitigs and the other on spectrum-preserving string sets which I was associated
with, proposed to store non-overlapping paths of the compacted de Bruijn graph
(defined later) as sequences, and store them in compressed form on disk. Despite
the representation apparently storing an incorrect representation of the graph, due
to paths being constructed by choosing edges arbitrarily, one may observe that the
original graph can be reconstructed losslessly from its path representation. Such a
disk representation achieved a space very close to the 2 bits per k-mer lower bound:
4.1 bits per k-mer for a whole human genome read dataset, and 2.7 bits per k-mer
for a human metagenome.

"For specialists, ¢ is the number of unitigs.
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1.8. Construction algorithms

1.8 Construction algorithms

An apparté will be made in this section, where we will briefly mention the data
structure construction algorithms. One typical pre-processing step commonly done
prior to creating a de Bruijn graph data structure is k-mer counting. This step takes
the input sequencing data and yields the set of distinct k-mers present in the input
along with their abundances. It essentially constructs the nodes of the de Bruijn
graph.

During the development of Minia, we had ran into an issue. The graph repre-
sentation was so succinct that other steps of the genome assembly pipeline acted
as bottlenecks, including k-mer counting. At the time, the most efficient k-mer
counter was Jellyfish [MK11], which used a custom thread-safe hash table optimized
specifically to store k-mers. Yet, Jellyfish would have used much more memory than
Minia. We therefore set out to design a low-memory k-mer counting tool that would
use the disk to alleviate memory usage (DSK [RLC13]). This strategy was also used
by other popular k-mer counting tools, e.g. KMC [DDGG13].

The problem of k-mer counting is fascinating in its simplicity but also difficult to
engineer correctly, given that large volumes of input sequences need to be processed
with high CPU utilization, low memory usage, and bandwidth-limited disk accesses.
A relatively current review is [MS18]. After k-mer counting, nearly all of the data
structures presented above have their own, customized construction algorithms. As
such, there does not exist an 'universal’ construction algorithm for de Bruijn graph
that would then be slightly adapted to derive a particular data structure.

However, several recent data structures (the one presented in [CLJ"14], Puffer-
fish [ASSP18], BLight [MKL21]) require as input a common object: the compacted
de Bruijn graph. It is obtained from a classical de Bruijn graph by transforming
each non-branching path into a single node, similarly to suffix tries are transformed
into suffix trees by collapsing paths of vertices having one child. However, this is a
circular situation: in order to construct an efficient representation of the classical
de Bruijn graph, one must have already constructed a compacted de Bruijn graph,
which itself is obtained from the classical de Bruijn graph. In order to break this
circularity, My colleagues and I proposed an efficient construction algorithm for the
compacted de Bruijn graph [CLJ"14], which uses a constant amount of memory. It
was further extended to make use of multiple threads efficiently [CLM16].

1.9 Current state of the art

Since the influx of de Bruijn graph data structures in 2012, several more have been
published in the recent years. As it turns out, many of them are based on minimal
perfect hashing. It is a variation of a hash table which does not store its keys, yet
still manages to resolves collisions. Minimal perfect hashing is unable to confirm
if an arbitrary key is present or absent in the structure, however for any key that
was inserted during its construction, it returns an exact answer. This makes the
structure highly space-efficient. Along with colleagues, we proposed a fast parallel
C++ library for constructing minimal perfect hashes (BBHash [LRCP17]) which has
been engineered to scale significantly better than other existing implementations at
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Figure 1.4: Consumer RAM costs from the 2007-2021 period. Each dot is a
retail DIMM product sold on the current year. Source: https://jcmit.net/
memoryprice.htm

the time.

Among current de Bruijn graph data structures, I will briefly highlight Puffer-
fish [ASSP18] and Blight [MKL21] which are both based on the compacted de Bruijn
graph, and queries are supported by an additional minimal perfect hashing struc-
ture that quickly locates positions within nodes of the compacted graph. The Bloom
Filter trie [HWS16] and Bifrost [HM20] structures both use Bloom filters in addi-
tion with other auxiliary data structures to keep the representation exact, yet even
brushing their algorithmic details would be too technical for this survey. Counting
quotient filters [PBJP17] improve upon Bloom filters by also storing the number of
occurrences of each node in the input data. Belazzougui et al. proposed a naviga-
tional data structure based on minimal perfect hashing, with a clever addition of a
tree data structure to restore membership queries. For more details on all of these
data structures, see [CHM19].

In a way, one might acknowledge that “the dust has settled” in the landscape
of de Bruijn graph data structures. The bioinformatics algorithms community has
attempted for several years to come up with solutions that combine low space usage,
fast query speed and a reasonable set of features. The outcome is a set of current
data structures that achieve reasonable trade-offs, with space close to the known
lower bounds. As a result, de Bruijn graphs are no longer a bottleneck in genome
assembly, partly also due to decreasing RAM costs (Fig 1.4).

Then, is this the end of this line of research? Not quite, as the natural next
frontier is the representation of multiple genomes within a generalization of the de
Bruijn graph.
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1.10 Colored de Bruijn graphs

As a coincidence of dates (or perhaps not), 2012 was not only the year where many
seminal data structures for de Bruijn graphs were proposed, but also the year when
the term colored de Bruijn graph was coined (in [ICT*12]), which will pave the
way to the next type of contributions that we will mention here. Colored de Bruijn
graphs generalize de Bruijn graphs to multiple samples. When faced with multiple
samples, a classical de Bruijn graph would bundle them together and consider the
union of all samples as a single “mega-sample”. Colored de Bruijn graph also do
that, but they add additional information associated to the nodes so that one can
tell the origin of each node across samples. Naturally, speaking in terms of lower
bounds, storing such a graph for multiple samples should require strictly more space
than storing the graph of any subset of samples.

Several data structures have been proposed to store colored de Bruijn graph, the
first of which was based on an efficient hash table [[CTT12], then later using the
Burrows-Wheeler transform [MBNT17]. More recently my colleagues and I proposed
the REINDEER structure, based on compacted de Bruijn graphs and minimal per-
fect hashing [MIG*20], with the distinctive feature of not only storing the pres-
ence/absence of nodes, but also the approximate frequency of each node within each
sample.

To the best of my knowledge, there has been no attempt made at formulating
space lower bounds for colored de Bruijn graphs. One may obtain one through
an immediate application of existing lower bounds to the union graph disregarding
color information. However, this would be a loose bound as much of the difficulty
of storing colored graphs lies in the color information.

1.11 Wrap-up and open questions

As we reviewed above, many data structures have been proposed to store de Bruijn
graphs, achieving several order of magnitudes improvement in space usage compared
to using off-the-shelf data structures for graph storage. From this perspective, the
theoretical study of data structures along with their practical implementations has
been successful at providing performance gains for widely-used software tools (e.g.
[BNAT12, LLL"15]). Looking back, the improvements have mainly be due to two
realizations. 1) Data structure exactness can be sacrified yet still provide exact
results in a certain frame of operations. 2) The theoretical worst-case analysis of
data structures inadequately applies to practical instances. The latter realization is
the topic of an upcoming article from Medvedev [Med], critically reflecting on the
analysis of bioinformatics algorithms more broadly.

Several topics were not covered in this document, to keep it simple. One is
double-strandedness, which forces all the data structures mentioned above to con-
sider that a k-mer and its reverse-complement should be the same object; this adds
theoretical and especially practical complications, yet does not fundamentally change
the exposition of the data structures. An additional one is the use of multiple k val-
ues. Nowadays genome assembly tools on short reads typically construct multiple
de Bruijn graphs iteratively. This is a somewhat orthogonal matter as presented
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here, given that each individual graph is represented using one of the techniques
above. We note however that some works have attempted to unify multiple graphs
into one [BBG™15, CR20]. Another consideration is how to store the number of
times each k-mer is seen in the input. All these considerations are discussed in more
details in [CHM19].

We summarize here a few open questions:

1. Can compressed representations e.g. spectrum-preserving string sets be made
efficiently queryable? This would lead to even more compressed de Bruijn
graphs.

2. What would be a space lower bound for exactly representing a colored de
Bruijn graph of n samples, each sample i having D; distinct k-mers?

3. A matching upper bound of the above.

4. How to efficiently represent not only the presence/absence of a node but also its
abundance in colored de Bruijn graphs (improving upon REINDEER [MIG*20]).
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Chapter 2

An attempt at taxonomizing
research problems, with a
bioinformatics case study

2.1 Introduction

In this Chapter I will present a more varied selection of other contributions, in the
spirit of illustrating a sufficient body of work for defending an HdR. In doing so,
I will also categorize these contributions at a more abstract level, i.e. in terms of
what sort of research questions they are, independently of their application domain.
The goal of this categorization is partly self-reflective, i.e. to help me understand
what T am keen on tackling and what sort of project ends up being fruitful. (The
intersection between the two categories is unfortunately not the union.) It is also
partly illustrative, to provide the reader with some considerations on my research
philosophy, in the hope that this sort of content akin to a “retrospective research
statement” fits the scope of an HdR document. I will also highlight the collaborative
nature of all these works, some of which were performed by students under my
supervision, and will describe the source of the research funding in each case.

2.2 K and U problems

My personal definition of performing applied research is to achieve a non-trivial goal
X, where X was never done previously. I consider two distinct types of problems:

o Type “K” (for Known) problems: we have some idea of where to start on the
path towards achieving X, and possibly could outline the whole research plan.

o Type “U” (for Unknown) problems: we have no idea of where to start, or we
hold the belief that X is impossible. (Yet, X will turn out to be possible.)

The term “we” in those definitions refers to any subset of researchers. To simplify,
I will consider that “we” is the entirety of a particular research community, e.g. the
set of people working on algorithmic bioinformatics.

K problems may be ideal for applying for certain sources of funding requiring
that a complete methodology is laid out, risks are assessed, and evaluators will be
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| Tool name | Year | URL | Type | Citations (2021) |
REINDEER | 2020 | github.com/kamimrcht/REINDEER | K 9
BBHash 2017 | github.com/rizkg/BBHash K 50
BCALM2 2016 | github.com/GATB/bcalm K 113
pugz 2019 | github.com/Piezoid/pugz U 9
Minia 2012 | github.com/GATB/minia U 376

Table 2.1: Overview of my presented research works that will serve as illustrations
to type K and U problems.

confident that the research program has a chance to be successful. K problems
are more straightforward to outline than U problems, as sketching the research plan
does not require to have started carrying the research. Conversely, U problems might
require large amounts of preliminary work to even figure out the research program,
which could very well end up being the hardest part of the research. I suspect that
it is easier for K problems to be qualified as “incremental work” or “engineering”
than U ones.

One can be tempted to introduce another type, the Type “I”: where X is truly
impossible to achieve. I will argue here that such a type is unnecessary as one could
formulate a dual problem: “prove that X is truly impossible” which would end up in
either category K or U. The original type “I” problem is then subsumed and brought
into one of our two defined classes.

Determining if an open problem is K or U is unfortunately an endeavour of
uncertain outcome. If a problem is truly U but an individual thinks that it is K,
then it is likely that the envisioned research plan would end up to be unfruitful.
One may argue that all problems are truly K yet some are put into the U category
until someone figures out the right steps. Indeed, if there existed an Oracle capable
of guessing any research plan perfectly, this would be the case. I will argue that
such an Oracle does not exist, and while some individuals may approximate such an
Oracle with reasonable accuracy, there will always be a space for U problems.

The K/U duality bears some similarities with the NP complexity class. Indeed,
a NP problem has a polynomial-sized solution that may have taken an exponential
time to find. Similarly, one can think of a valid research plan of an U problem as
a polynomial-sized string. In the case of K problems, such a string is often readily
guessed. For U problems, finding such a string may take up to exponential time.

2.3 Overview of the presented works

Table 2.1 summarizes the research works that will be presented in the rest of this
section. They are all either my direct contributions or works I was closely involved
with.
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2.4 Some K problems

2.4.1 REINDEER

As a transition from the previous Chapter, I will describe in more details the REIN-
DEER algorithm [MIG*20]. This will illustrate a K problem starting from a familiar
context.

All the algorithmic ideas were proposed by Camille Marchet, who was my postdoc
at University of Lille at the time. Along with my co-advisor Mikagl Salson, we set
Camille on the course of this project and provided feedback along the way. This
work was funded by a national research grant (ANR Transipedia, headed by Daniel
Gautheret) aiming to perform large-scale transcriptomes analysis.

Given a collection of samples (in our case, short-read RNA-sequencing data),
REINDEER is a method that constructs a representation of the de Bruijn graph of
the union of the samples. It also records the frequency of each k-mer in each sample.
It is furthermore able to support fast k-mer queries, i.e. the graph is indexed.

The main algorithmic ingredients of REINDEER, are 1) minimizers, 2) count-
vectors, 3) monotigs, and 4) the BLight index method:

1. Minimizers [RHH"04] are substrings of fixed length (typically 10-12), which
correspond to the lexicographically smallest string within a longer string. Min-
imizers are a now classical notion in sequence analysis, as they help partition
sequences into buckets, and facilitate alignment or assembly of similar se-
quences.

2. A count-vector is simply the vector of frequences of a given k-mer across all
the samples. For example given three samples, if a k-mer is seen three times
in sample 1 and four times in sample 2, and not in sample 3, its count vector
is {3,4,0}.

3. Monotigs are sequences of a path in the de Bruijn graph where all k-mers have
the same minimizer and the same count-vector.

4. BLight [MKL21] is an indexing data structure for k-mers akin to a hash table,
optimized for space efficiency and query speed.

These ingredients are combined in the following way: monotigs are constructed
then indexed by BLight, which uses minimizers behind the scenes. A count vector
is associated to each monotig. To improve space efficiency, count-vectors are de-
duplicated and BLight only stores references to a table of distinct count-vectors.
Figure 2.1 illustrates how these ingredients are combined.

The main algorithmic novelty in REINDEER is the concept of monotig, and
putting all the other ingredients together forms a new method. This statement how-
ever hides several other parts of the work that are no less important, e.g. coming up
with a monotig construction algorithm, making a robust software overall, performing
evaluations on large datasets, etc..

In terms of results, REINDEER is the only known implementation capable of
storing k-mer counts along with their presence/absence, thus we could not directly

- 97 -



Chapter 2. An attempt at taxonomizing research problems, with a bioinformatics
case study

REINDEER building blocks

union k-mer set monotigs monotigs-rows count matrix
mapping
ACTACT @ ACTACT @ di d2
CTACTT @ CTACTTCA e
TACTTA ® TTACAG TTACAG2 13 4
ACTTAC © CTACTTCA-1
TTACAG

Figure 2.1: Nlustration of the REINDEER method. A union k-mer set is constructed
from all the samples, then converted into monotigs. A mapping between monotigs
and count matrix rows is created (gray box), and in addition a mapping between
k-mers and monotigs is realized (not shown in the figure) using BLight. Finally, a
count matrix is created which records the average count of k-mers across monitigs,
for each sample. (Figure by Camille Marchet, adapted)

compare it with any other method. That said, it achieves slightly higher but com-
parable index sizes than methods that only index the presence/absence of k-mers,
with similar construction time and peak RAM. However, it requires 1-2 orders of
magnitude more disk during construction.

Why is it a K problem There were several possible routes towards achieving the
goal of REINDEER. Building upon classical k-mer counters and compacted de
Bruijn graph construction, obtaining unitigs along with their mean k-mer abun-
dance was a straightforward first step. From this base, Camille decided to go with
the “monotig” route, and ended up using an efficient existing component (BLight)
to index them. It might have also been feasible to e.g. directly store k-mers and
their count-vectors in BLight, which would have resulted in similar functionality
yet likely inferior performance. Alternatively, we could also have indexed the com-
pacted de Bruijn graph using a FM-index and then add abundance information,
which would also possibly have been less effective in terms of construction speed.
Perhaps we could also have designed a different type of “monotig”!. Either way,
we were confident that several routes, some of which consisting of piecing together
existing building blocks, would lead to a successful outcome. I believe this is a
hallmark of a K problem.

2.4.2 BBHash

Also mentioned in the previous Chapter, the research around BBHash is another
K problem by the nature of its algorithmic ingredients. Here it is even debatable
whether the contribution is of engineering nature or of research nature, however I
will argue later that it is indeed in the research realm.

Again, this work was mainly performed by colleagues: Guillaume Rizk and An-
toine Limasset designed the algorithm and coded the software, joined by Pierre Pe-

!See this excellent blog post on the existing -tig concepts: https://kamimrcht.github.io/
webpage/tigs.html
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Figure 2.2: Classical hashing versus minimal perfect hashing. A set of keys
{a,b,c,d, e} is to be associated to respective values {vg,...,v.}. The bottom left
panel indicates a possible memory organization for a classical hash table, where
some locations are unoccupied, and some others are occupied by one or more values
associated to keys. In the case of multiple values, this is known as a collision. To
achieve this organization in practice, each location can be implemented as e.g. a
linked list. On the bottom right panel, a minimal perfect hash function allows to
maximize utilization by having no empty location, and none of the cells have colli-
sions, therefore each location is e.g. a memory chunk of the size of the value type.

terlongo and myself for the manuscript preparation. However I take pride in the role
of highlighting that it was a problem worthy of being investigated, and pointed out
the limitations of the state of the art at the time through the creation of a comprehen-
sive benchmark implementation (https://github.com/rchikhi/benchmphf) that
served as a touchstone for BBHash. This work was not funded by any particular
grant, all authors contributed to it on their own principal research time.

BBHash [LRCP17] is a minimal perfect hash function, i.e. a hash function that
associates an integer range to a pre-defined set of keys. The “minimal” part refers
to the fact that integer range has the same cardinality as the set of input keys. The
“perfect” part indicates that there are no collisions, i.e. two keys must be associated
to two different integers. See Figure 2.2 for an illustration.

BBHash works in the following way. An set of elements are given as input. They
can be strings, integers or more complex objects, as long as one can design a classical
hash function to hash them. A Bloom filter is created over this input set. Then, all
the elements that collide over this Bloom filter, i.e. which correspond to the same
‘1’, are recoded in a separate set. Another Bloom filter is created for this separated
set, and all the colliding elements are recorded again. These steps are repeated as
lon as the set of colliding elements is larger than a certain predefined size. Finally,
if there exists a remaining (small) set of colliding elements, they are stored in a
classical hash table. Figure 2.3 illustrates this process.

Through exhaustive benchmarks, we demonstrated that BBHash achieves at
least two orders of magnitudes better space efficiency during construction, and at
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Figure 2.3: Illustration of the BBHash algorithm. The set {x1,...,zg} are the input
elements to be hashed. The first Bloom filter is the 7 leftmost values in the bit array
above. The second (resp. third) Bloom filter are the following 5 (resp. 3) values.
A different hash function is used each time (hg, hi, h2). Here, no additional hash
tables as in the final level, 1 and x4 do not collide.

least one order of magnitude faster construction [LRCP17]. The resulting function
has slightly higher space usage and faster or comparable query times than other
contemporary methods.

It turns out that the BBHash algorithm is not entirely novel. A similar idea
was proposed in another software (Meraculous [CHS'11], coincidentally for storing
de Bruijn graphs) and another perfect hash function [MSSZ14]. Yet, at the time of
designing BBHash, no existing implementation was capable of handling billions of
keys. This was likely due to suboptimal engineering, but also and importantly, some
missing ingredients in available methods. BBHash therefore provided a novel and
effective mix of ingredients that yields a very effective minimal perfect hash function
in practice.

Why is it a K problem Framed in the following way, the research around BBHash
is a K problem: “Can one re-use previously published ideas (e.g. from Meraculous)
to improve the state of the art of minimal perfect hashing?”. Of course, if it is
framed in another way it could become a U problem, e.g. “Can one come up with
a way to beat the best existing minimal perfect hashing method?”. 1 cannot tell
what was inside the mind of Antoine and Guillaume when they designed BBHash,
however 1 have a strong suspicion that they indeed treated the problem as a U
problem and did not know that the ideas they came up with were partly previously
published. However, in the way we framed the contribution in our article, we made
abundantly clear that BBHash re-uses previously published ingredients, making the
whole contribution appear as the outcome of a K problem.

2.4.3 BCALM2

As a final example of a K problem, we also expand on a method briefly mentioned in
the previous Chapter. BCALM]1, the first version of BCALM, was a single-threaded
algorithm that constructs the compacted de Bruijn graph.

The algorithmic ideas of BCALM2 [CLM16] were contributed by Paul Medvedev,
Antoine Limasset, and myself. Unlike the other projects presented above, I realized
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most of the implementation of BCALM2 in C++, building on top of code provided
by Antoine Limasset for BCALM]I, and code provided by Paul Medvedev for the a
module. In particular, BCALM?2 uses the GATB [DRC*14] C++ library for k-mers
and de Bruijn graphs, and is also integrated as a component within it. This work
benefited greatly from previous developments funded by an Inria technological grant
(ADT GATB). Yet BCALM2 was mainly carried on my own research time at CNRS.

Although it was sketched in the previous chapter, we provide the definition of
a compacted de Bruijn graph here. A path in a de Bruijn graph is said to be an
unitig if it is either a single node, or for each internal node x of the path (i.e. not
the extremities of the path), then the in-degree and the out-degree of z is 1, the
out-degree of the first node of the path is 1, and the in-degree of the last node of
the path is 1. A unitig is said to be maximal if it cannot be extended by a vertex on
either side. The compacted de Bruijn graph is the graph obtained from a classical
de Bruijn graph by considering all maximal unitigs as nodes, and edges remain the
(k — 1) exact suffix-prefix overlaps between unitigs, i.e. the same overlap rule as in
classical de Bruijn graphs.

The main idea behind BCALM1 was to partition k-mers according to their min-
imizers and write those partitions on disk. Then, in a particular order, process each
partition and construct the compacted de Bruijn graph of it. Finally each of the
unitigs of a partition was either output or appended to a later partition. It is clear
that this algorithm is not straightforward to parallelize given that the partitions
needed to be processed in a particular order.

In BCALM2 we found that by doubling a certain subset of k-mers and writing
those to two partitions, then the partitions could all be processed and compacted
independently and in parallel. Some examples of instances that illustrate this process
are shown in Figure 2.4. However, a last post-processing stage would be necessary
to ‘glue’ the resulting unitigs because some of them contain duplicated k-mers at
their extremities. The key aspect is that the final glue is a relatively inexpensive
operation that can also be performed in parallel. The whole pipeline is summarized
in Figure 2.5.

BCALM2 is still to this date one of the most effective implementation for con-
structing the compacted de Bruijn graph of large sets of reads. It can process human
genome reads in around an hour with a couple GB of memory, and was engineered
to support even larger samples. A close competitor is Bifrost [HM20], which was
tested up to human-sized genomes. Bifrost also supports several additional features,
among which: dynamicity, i.e. nodes can be inserted or deleted, and graph index-
ing, i.e. nodes can be queried. For constructing de Bruijn graphs of (collections
of) reference genomes, several recent techniques have appeared using a completely
different approach, e.g. TwoPaCo and Cuttlefish [MPM17, KP20].

Why is it a K problem Whether BCALM1 stems from a U problem is an interesting
question that I will not tackle here. I believe it is easier to argue that coming up
with BCALM2 is a K problem, framed as follows: given that we know of a sequential
algorithm that constructs the compacted de Bruijn graph (BCALM1), is it possible
to design another algorithm that runs using multiple threads? In some cases, when
the initial single-threaded algorithm performs steps that are independent, the answer
to such a question can be as trivial as transforming an iterative ‘for’ loop into
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AA partition

partition

Compacted partitions:

Compacted partitions: GTGACGA
GTGATGAC ACGAC
ATGACC ACGAA
ACGAAG

Figure 2.4: Two examples of de Bruijn graphs that illustrate the BCALM?2 algorithm.
Nodes are partitioned according to their minimizer (in color). Partitions are denoted
by solid areas. Dotted areas indicate the addition of another k-mer to a partition
due to its prefix having a different minimizer than its suffix. Then, each partition is
compacted independently, resulting in the sequences shown at the bottom of each
panel.
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Figure 2.5: Illustration of the inputs/outputs and the two building blocks of the
BCALM2 algorithm. The parallel partial compaction algorithm is illustrated by
Figure 2.4. Each color at the extremity of a sequence corresponds to a particular
k-mer. The parallel glue algorithm conceptually merges two sequences at their
identically colored endpoints.
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a ‘parallel for’. Unfortunately for BCALM this was not the case, as we had to
significantly redesign the algorithm and even introduce novel algorithmic ingredients
in order to make it run in parallel. That said, there were little doubts that some
way could be found to make it parallel, although it was not obvious at first how to
best do it. This is in my opinion a clue that the problem was truly a K problem and
also not just an engineering question.

2.5 Some U problems

2.5.1 Parallel gzip decompression

We now move to U territory with our first illustration of a U problem. Here we will
present an algorithm that decompresses gzip-compressed files in parallel.

The main algorithmic idea was contributed by Mael Kerbiriou, who has also
implemented it. I proposed to him this project and showed a preliminary proof of
concept hinting that the task was maybe possible. It was originally a side-project of
programming a faster parsing of compressed read files, however this became a project
of its own given its potential for more broad interest. The work was funded by an
Inria technological grant (ADT) for creating a C++ library for handling alignment
seeds.

Before we give algorithmic details, let us briefly outline why this problem has
a U flavor. There exists a parallel gzip compression algorithm, implemented in
the pigz program (https://github.com/madler/pigz). However, pigz does not
decompress in parallel. There is a fundamental reason to this: data dependency. A
compressed block makes references to the previous block, therefore one needs to have
decompressed block ¢ before decompressing block ¢ + 1. Thus it appears impossible
to perform decompression in parallel.

Now I will explain some of the algorithmics of gzip and the parallel gzip decom-
pression method we developed in pugz [KC19]. For formal definitions, see the arti-
cle [KC19]; here I will focus on the intuition. A gzipped file consists of a header,
then a series of compressed blocks (Figure 2.6). Each compressed block can be
seen as a list of elements, where each element is either a plaintext character or a
reference to a previous position along with a length, indicating to copy a certain
number of characters from that previous position. An additional layer is applied to
the list of elements so that it is compressed, in part using Huffman coding. The
interesting part concerns the elements that are references. The references instruct
to copy characters that were previously decompressed (which may themselves have
been decompressed via a reference, and so on ...). A reference copy is limited to
within the 32 KB window that precedes the current character; yet this window may
overlap with one or more previous block(s). Thus, it is nearly always the case that
the beginning of a block has references to the previous block.

Our method pugz [KC19] proceeds in two passes. In the first pass, the com-
pressed file is partitioned into as many chunks as there are threads. I will skip the
technicalities regarding how to reliably split a gzipped file into chunks and not fall
inside the middle of an encoded element, yet the take-away is that this operation can
be robustly done for ASCII text files. Then, the first chunk can be decompressed
as-is as it starts from the beginning of the file. Each other chunk is a random access
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gzip block  dynamic huffman Compressed next .
header|| header tree definition stream block
Header Block 1 Block 2

Figure 2.6: Simplified schematic of the gzip format.

Thread 0
First pass: Thread 1
decompression real .
D,
with undege?mned Thread 2 W W P
Symools Back-references to '\y
undetermined symbols
0 Decompressed stream postion
Second pass: Dy
resolving Thread 1
undetermined Do
symbols Thread 2 W3

Figure 2.7: Illustration of the pugz algorithm. (Figure credit: Mael Kerbiriou)

with an unknown context, so none of the elements that are references to positions
before the chunk can be reliably decompressed. The key idea is to create a table of
32,768 symbols, where each symbol corresponds to an unknown character at a cer-
tain position before the chunk, and propagate those symbols throughout the chunk,
following the chain of references. Then, the second pass of pugz goes through the
whole decompressed file from start to finish and elucidates the unknown characters,
given that the end of the first decompressed chunk allows to fully decompress the
second chunk, etc. This effectively completes the algorithm. The overall process is
depicted in Figure 2.7.

Our approach is limited to text files as the splitting of compressed files into
chunks was not reliable with arbitrary binary files. Also, the implementation is not
yet robust to decompress some variants of the gzip format (multipart gzip files),
yet this is not a fundamental limitation of the method and more of an engineering
aspect.

Within this project I also experimented with another research direction, namely
performing random accesses in gzipped files. It is also an a priori impossible task due
to the dependencies between compressed blocks as we saw above (Figure 2.8). How-
ever, it turned out that those dependencies tend ’evaporate’ after a while, depending
on the compression level and the amount of repetitions within the uncompressed file.

N

gzipped ;55553222222
Stream lPrRrRRRRRl Ibaa_abba-bbaa,,

| |
Start of decompression

Figure 2.8: Description of the issue with performing a random access inside of a
gzipped file. There exist references (black boxes) to characters that are before the
start of the stream.
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sequence header quality header sequence quality
2?2?27?B??2?AR95<058 @4Q222222222222°2 DDDBDDDB9@<BDDDC IGIGHHHEEHCEFF F
QA3:?AA??22222°2°? CCCB D EE FEECACCCDCCDD
222222222222222°2 84527799 ECAQEB
GC2C 9652:
1 6 C T 7982 12743°214
TA CARGR TN G2 91
AAAAAAC mm ITATG GAT GAAG G|wm |GTCATGCTCTT AGC
GT GCGGG C. GC GCT CCA C 'ACC TATCTC
T T A CAACTATA TC GCGAAAGACTTCC
A © GG CAGCGTCT C ATGGTAGTACGGCTAT
[22= @D GGGG TGG TC GG AAAACAGAAAAGARAA
G I I IGENIC CTCTTCCG?TATCTCT
Initial 32 KB Block 0 (after Block 1 Block 10 Block 50
undetermined random access)

context

Figure 2.9: Illustration of a decompression starting from the middle of a real gzip-
compressed FASTQ file. Initially the context is unknown, therefore references to
previous blocks cannot be determined and are reflected by ’?’ characters. However,
as decompression continues there exist less and less unresolved references in the
following blocks and nearly all DNA sequences characters become correctly decom-
pressed. However, quality values are still not resolved. This is due to quality values
being more repetitive than DNA sequences across the file.

There was a possibility that random access may be possible. Figure 2.9 illustrates
this effect on a real FASTQ file. In the pugz article, we reported on these findings
and concluded that although it was possible to decompress nearly perfectly after a
certain number of blocks following a random access, the decompression was never
fully perfect even at low compression levels. This defeats the purpose of providing a
general-purpose robust random access tool, although it may have an usage in foren-
sics [Brol3]. Yet I consider this investigation of random accesses in gzipped files
unsuccessful so far.

Why is it a U problem The task of performing parallel decompression of a gzipped
file was previously thought to be impossible (https://github.com/madler/pigz/
issues/36#issuecomment-249041503). There has never been any document at-
tempt. Thus I believe this makes the research around pugz tackle a U problem.
Note that this does not mean that the research is high-impact: indeed the article is
still to this date almost never cited.

2.5.2 Minia

As a final example of a U problem, we will expand on a method mentioned in the
previous Chapter. Minia is an exact navigational structure for the Bruijn graph
based on a Bloom filter.

It is joint work with Guillaume Rizk, that I contributed at the time of my PhD
defense, thus Minia did not make it into my PhD manuscript. The work was not
funded by a particular grant, however my thesis was funded by governmental funds.
The work sparked several other projects, such as the GATB library, which itself
led to several other contributions from my former team or other teams in France:
DiscoSNP [URLT15] for SNP detection, MindTheGap [RGCL14] for insertion de-
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tection, Leon [BLLT15] for read compression, Bloocoo [BLLR14] for short read
correction, LORDEC [SR14] for long read correction.

To get an intuition of the principle behind Minia [CR13], refer to the bottom
panel of Figure 1.2 which describes how a de Bruijn graph can be represented using
a Bloom filter. The original idea for doing this representation was proposed in Pell
et al [PHCK"12]. Yet, the representation is inexact: it may include nodes that are
false positives, by the very nature of the Bloom filter. Minia extended this idea by
detecting and storing those false positives inside a simple hash table. Some analysis
was necessary to determine the optimal size of the Bloom filter in order to have not
too many false positives to store separately, while at the same time balancing with
having a small enough Bloom filter.

The efficiency of the Minia representation allowed to perform for the first time
a genome assembly of a complete human genome on a desktop computer, and the
process took less than a day. Although the contiguity of the resulting assembly is
bad by long read standards, it was comparable to the quality of human genome
assemblies from other genome assemblers at the time, at the contig level.

Why is it a U problem Representing a de Bruijn graph using less bits than the
Conway-Bromage representation was thought to be impossible, by virtue of their
information-theoretic lower bound. However, we showed with Minia, and later for-
malized in a finer analysis [CLJ"14], that this lower bound does not hold for a class
of k-mer sets that satisfies the spectrum-like property, i.e. where k-mers come from
some underlying set of longer strings. Thus the research work done in Minia satisfies
the U condition upon the prior belief that the task was thought to be impossible. One
potential objection is that Minia appeared only shortly after the Conway-Bromage
article, and that the competing method BOSS [BOSS12] was also developed the
same year, which may hint that both Minia and BOSS were regular and potentially
even immediate contributions. I would argue that their widespread use today and
lack of more efficient methods casts a doubt on this objection.
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In this document I have presented two Chapters that retrace some of my previous
works in the domain of sequence bioinformatics. The first Chapter presented a
collective research initiative on data structures for storing k-mers and de Bruijn
graphs, and the second Chapter presented a collection of collaborative works related
to short-read sequence data analysis.

The field of sequence bioinformatics is strongly tied to the availability of bio-
logical data, in the form of sequences. Historically, the data has typically been of
one of these two types: 1) complete genes or genomes, and 2) short-read sequencing
data where each sequence is partial. Nowadays, the production of biological data
is rapidly changing towards a third type: 3) long-read sequencing data where each
sequence potentially contains an entire gene up to an entire chromosome. The ad-
vent of this third type of sequencing data opens several research directions, some of
which I plan to tackle in the future years.

There is of course more than just the length and content of the sequencing data
at play. For instance, the error rate of 3rd generation sequencing data is markedly
higher than that of second generation short read sequencing data. However, very
recent updates to third generation sequencing technologies provide highly accurate
long reads, e.g. with PacBio HiFi data. Also the throughput of the data is important
as it has an immediate consequence on the depth of sequencing, which is critical in
applications such as transcriptomics or pangenomics, where some sequences domi-
nate others in terms of abundance.

In light of these considerations, I plan to tackle the following areas of research
in the future: a) elucidate the missing variability inside metagenome assembly using
long reads; b) perform long-read genome assembly very efficiently using accurate
long reads; c) perform large-scale analysis of variants in population using k-mer
matrices.

For a), my postdoc Riccardo Vicedomini is currently developing a pipeline to
separate bacterial strains within sequenced metagenomes using long reads. Sev-
eral methods for achieving this goal using short-read datasets have already been
proposed, but none using long reads. As sequencing using accurate long reads is
becoming more prevalent in metagenome sequencing projects [BKT21], it would
be desirable to take advantage of long reads to provide higher-quality metagenome
assemblies. Strain separation is important not only to characterize all the organisms
present in a given sample, but also to identify those that play specific functional roles
in an environment. For example, there are functional differences in pathogenecity
of strains of Escherichia Coli in the intestinal microbiota [FWCT11, CRPM*10].
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Therefore, there is a possibility that strain separation will lead to the discovery of
novel biological roles of strains. A prototype implementation of strain separation us-
ing long reads is being implemented, with very promising results on low-complexity
microbiomes. At the moment however the method has some limitations related to
its use of haplotype phasing, which was not specially designed to our analysis case
(rather, to diploid phasing). Although we have shown that these issues are not
critical in low complexity metagenomes, I would like to continue working around
these limitations in order to improve strain separation for more complex data sets.
Another promising direction is the use of long and accurate reads such as PacBio
HiFi to greatly improve the contiguity and accuracy of metagenomic assemblies.

For b), along with collaborators Barig Ekim and Bonnie Berger, we are inves-
tigating an intriguing new data structure for representing de Bruijn graphs using
minimizers. Long-read sequencing data has, to date, not been amenable to be as-
sembled using classical de Bruijn graphs. There have been some variants of de Bruijn
graphs designed in e.g. the ABruijn and the wtdbg2 assemblers [LYK™16, RL20],
geared towards the assembly of long and error-prone reads. Fundamentally it is diffi-
cult to enumerate all genomic k-mers with a &k value large enough (e.g. with & > 30)
from error-prone reads, due to the high error rate leading to most k-mers containing
at least one error. That said, a few long enough stretches of non-erroneous bases
inside a read are sufficient to find anchors to a reference genome, which is in fact the
strategy adopted by most long-read aligners such as minimap2 [Lil8] (albeit with
short k-mer sizes). Similarly, the aforementioned techniques of ABruijn and wtdbg2
resorted to the use of smaller k values (in ABruijn) or rely on inexact alignment
(in wtdbg2) to build the nodes of their de Bruijn graph variants. In our current
research plan, we significantly deviate from previous directions and instead focus on
constructing a de Bruijn graph over a special type of k-mers, over a different alpha-
bet than the alphabet of nucleotides. The trade-off is that constructing such special
k-mers cannot be reliably done on error-prone long reads, and instead requires highly
accurate long reads. Fortunately, an emerging technology (PacBio HiFi) produces
such long reads, and our preliminary tests indicate that such data is very amenable
to the construction of those special de Bruijn graphs. We will continue investigat-
ing this direction in the future as it brings significant performance improvements
compared to existing approaches based on string graphs [CCFT21, NWR*20].

For c), k-mer matrices is an important object for many applications in the anal-
ysis of multiple samples of sequencing data. It consists in a matrix where the rows
are each k-mer present in at least one sample, the columns correspond to samples,
and the values are the abundances of each k-mer in each sample. This matrix allows
several types of analysis: in RNA-seq for the detection of differentially expressed
variations [APC*17], in genomics and RAD-Seq with the detection of SNPs without
references [URLT15], in bacterial genomics with bacterial GWAS [JLT*18]. How-
ever, the construction of k-mer matrices is difficult in terms of computation time and
of memory space resources and risk. This project consists in producing an efficient
method via algorithmic improvements. A pre-print of our current work with my PhD
student Teo Lemane, co-advised with Pierre Peterlongo, is available [LMCP21]. We
will apply these techniques to the analysis of sequencing data from a cohort of pa-
tients with Alzheimer’s disease; to determine regions of the genomes associated with
the disease, with a particular interest in structural variants. This is a collabora-
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tion with a team from the Institut Pasteur de Lille specializing in the genomics of
Alzheimer’s disease.

Although the three aforementioned research directions may appear to correspond
to 1-2 years projects leading to a single article each, I will argue instead that they
are the first stones in three different research programmes for which I do not yet
have a complete visibility.
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