
k -mer data structures in sequence bioinformatics

Rayan Chikhi

Institut Pasteur & CNRS

HDR defense, Sep 2021

1. A tale of optimizing the space usage of de Bruijn graphs
2. Minimizer-space de Bruijn graphs
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44 years of genome assembly

▸ 1977: First complete genome assembled (phi X 174)

▸ 2003: Human Genome Project completed

▸ 2014: First $1,000 genome

▸ 2021: Truly completed (Telomere-2-Telomere)

▸

Reads

Contigs

(Staden 1979) “With modern fast sequencing tech-
niques and suitable computer programs it is now
possible to sequence whole genomes without the
need of restriction maps.”
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Algorithmic pre-history

Screenshot: MIRA

1. Assembly using strings
▸ Shortest Common Superstring (Kececioglu, Myers 1993)
▸ Greedy algorithms (CAP3 from Huang, Madan 1999)

2. Assembly using graphs: string graphs and de Bruijn Graphs (both from DIMACS’94)
A History of DNA Sequence Assembly, G. Myers, 2016

dBGs widely used across genomics (SPAdes: 13,000 citations; Trinity: 12,000 citations)
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de Bruijn graph

A de Bruijn graph for a fixed integer k :

1. Nodes = all k-mers (substrings of length k ) in the reads

2. Edges = all exact overlaps of length exactly (k − 1)

dBG, k = 3:

AGC

GCC

GCA

CCT

CAT

CTG

TGA

ATG

TGA

Of those reads:
AGCCTGA
AGCATGA

dBG of E. coli reads, k=71:

Fig: Bandage
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This talk: how we tamed large de Bruijn graphs
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The early days (2008-2010)
- Short-read genome assemblers (EULER-SR, Velvet, SOAPdenovo, ABySS)
- Limited by machine memory (Most efficient: SOAPdenovo, 120 GB for human)

de Bruijn graph
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TG
AC

TT

CT

Low contiguity though:

Table from Chaisson et al 2008
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The birth of a line of research (2011)

- Conway & Bromage (2011)

- Assembly graphs can actually be stored efficiently

- Create a large array of 4k positions (e.g. 420 is a terabit)

- Put 1s at positions of k -mers

- Can be compressed optimally while supporting queries (Okanohara et al 2006)
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Is this the end of the research line?

space usage in bits/node

22 192

SOAPdenovo (2009)

Velvet (2008)

Conway-Bromage + lower bound (2011)
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Beating the lower bound (by inexactness, 2012)

Guillaume Rizk

PhD self

- 2011: Pell et al proposed an inexact dBG representation.
- Bit vector is replaced by a Bloom filter.

- 2012: G. Rizk & I proposed Minia
- Same idea, but made the graph exact where it matters
- Small space! Beats bit vectors by 2x.
- First assembly of a human genome on a desktop computer.

AC

0 0 1 0 1 0 0 1 0

CT TT
TG

hash function

Bloom filter

AG?

CT
TG

TT

CC?

AG

AC

CC

de Bruijn graph

AC CT
TG
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Beating the lower bound (by instance specificity, 2012)

- 2012: Sadakane et al proposed the BOSS encoding.

- Burrows-Wheeler transform modified to store a set of k -mers.

- Very small space! even smaller than Minia.

- But, some limitations (reverse complements, & took years to implement)

Fig: MEGAHIT

Fun fact: Minia and BOSS were both introduced at WABI’12
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New perspective on the topic (2014)

Paul Medvedev

Antoine Limasset

Postdoc self

- So, how comes Minia & BOSS beat the lower bound?

- The lower bound assumed the graph was exact.
- Minia only supports some operations exactly.

- We came up with new lower bounds, i.e. ≈3 bits instead of 22 bits.1

- Open problem: a matching upper bound in the general case

1R Chikhi, A Limasset, S Jackman, JT Simpson, P Medvedev, On the representation of de Bruijn graphs, RECOMB’14
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Paul Medvedev

Antoine Limasset

Postdoc self

- So, how comes Minia & BOSS beat the lower bound?

- The lower bound assumed the graph was exact.
- Minia only supports some operations exactly.

- We came up with new lower bounds, i.e. ≈3 bits instead of 22 bits.1

- Open problem: a matching upper bound in the general case

- Intriguingly fun fact2: BOSS is fully exact (same as bit vector) and yet
still beats the lower bound

1R Chikhi, A Limasset, S Jackman, JT Simpson, P Medvedev, On the representation of de Bruijn graphs, RECOMB’14
2For the handful of people on Earth who find this fun
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Where are we now? (& my contribs)

space in bits/node

2 2.43 4 6 8 22 27 192

SOAPdenovo (2009)

C-B Lower bound (2011)

Minia (2013)

BOSS (2016)

khmer (lossy) (2011)

Nav lower bound (2014)

DBGFM (error-free) (2014)

BLight (2020)
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Current works on dBGs (2016-2020)
k -mer counting Compaction MPHF based FM-Index based General purpose

KMC3 BCALM2∗ Pufferfish DBGFM∗ BBHash∗

DSK2∗ Cuttlefish BLight BOSS Bifrost
Jellyfish2 TwoPaCo FDBG∗ dynamicBOSS

SPAdes-kmercounter bufBOSS

TCA CAT ATT TTG

TGG

TGC

GGT

GCG

GTA

CGA

TAA

GAA

AAC ACC CCG

TCATTG
TGGTAA

TGCGAA
AACCG

Nowadays:

- Focus is less on space, more on features
- Fast query times, associativity, dynamicity
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A more complete review
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Part 2



Long reads genome assembly

- Oxford Nanopore, PacBio CLR
▸ 10-1,000 kbp reads, 5-12% error rate

- PacBio HiFi
▸ 10-25 kbp reads, ≤ 1% error rate

Classical de Bruijn graphs not applicable (no long error-free k -mers). Instead:

- Overlap graphs (Canu, miniasm, Shasta, Peregrine, . . . )

- Fuzzy dBGs (wtdbg2)

- Sparse dBGs: A-Bruijn or minimizers (Flye, MBG)

Challenge: Approaches don’t scale (high resource usage, slow assembly time)!
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dBGs on long reads: Minimizer-space de Bruijn graphs

Barış Ekim

Bonnie Berger

ACTGAGTAC
 CTGAGTACAT
     GTACATGAC

1

2
Let m1=AA, m2=AC, m3=AG, m4=AT

m2m3m2

    m3m2m4

        m2m4m2

3

ACTGAGTACATGAC
8

__TG__T____G__
7

AC__AG_ACAT_AC
+

m2m3m2m4m2

6

Base-space 

Minimizer-space 

POA
error-correction

High 
error %

Low
error %

m2m3m2

m3m2m4

m2m4m2

Minimizer-space 
de Bruijn graph

Reads
Assembly

4

5

- Long read human genome assembly on a desktop computer
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Preliminaries: Minimizers

Two kinds:

- window. Local: “smallest” l-mer in a window
AATGACATGATCATGA

AA

AC

AC

- universe. Global: set of l-mers with low hash values

AATGACATGATCATGA
Fixed set of 

universe minimizers

GA
TC

CC
GA TC

From now on: universe.
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This work: stems from three ideas

Shasta Peregrine wtdbg2

read

list of minimizers

{A,C,T,G}

{256-mers}index of minimizer
pairs

mdBG

(Shafin et al, 2020) (Chin et al, 2019) (Ruan et al, 2020)
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Our approach: Minimizers as tokens of the alphabet

Classical alphabet: ΣDNA = {A,C,T ,G}
A k -mer with k = 3: AGT

Minimizer alphabet:

Σ`
= {all minimizers of length `} = {m1,m2,m3, . . .}

where e.g. ` = 2, m1 = AA, m2 = AC, m3 = AG, m2 = AT
A k -mer over Σ` (a k -min-mer): m1m3m2

21



Results: Whole-genome de novo assembly
From accurate HiFi (< 1% error-rate) reads

Convert into
base-space

Simplify mdBGConstruct mdBG

Input reads Contigs

Convert into
minimizer-space

ACATGAAGATGACG
ATGAAGATGACGATT

AAGATGACGATTACC

AC  AT  AA  AT  AC

ACATGAAGATGACG

AC  AT  AA  AT  AC

 AT  AA  AT  AC  AT

 AA  AT  AC  AT  AC

AC  AT  AA  AT  AC

ACATGAAGATGACG
AC  AT  AA  AT  AC  AT  AC

ACATGAAGATGACGATTACC

Whole human PacBio HiFi (HG002) 50x coverage:

Tool name Peregrine hifiasm rust-mdbg

Wall-clock time 14h8m 58h41m 10m23s

Memory usage 188 GB 195 GB 10 GB

# contigs 8109 431 805

NG50 (Mbp) 18.2 88.0 16.1

Genome fraction 97.0% 94.2% 95.5%
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Results: Metagenome assembly

Zymo D6331 mock metagenome HiFi

Species Abundance hifiasm-m rust-mdbg

A. muciniphila 1.36% 100.000% 100.000%
B. fragilis 13.13% 99.994% 99.997%
B. adolescentis 1.34% 100.000% 99.730%
C. albican 1.61% 67.832% 39.821%
C. difficile 1.83% 99.996% 99.978%
C. perfringens 0.00% 0.005% 0.005%
E. faecalis 0.00% 0.006% 0.006%
E. coli B1109 8.44% 100.000% 97.918%
E. coli b2207 8.32% 100.000% 98.663%
E. coli B3008 8.25% 100.000% 99.558%
E. coli B766 7.83% 96.913% 96.270%

Species Abundance hifiasm-m rust-mdbg

E. coli JM109 8.37% 100.000% 97.852%
F. prausnitzii 14.39% 100.000% 100.000%
F. nucleatum 3.78% 100.000% 99.960%
L. fermentum 0.86% 100.000% 100.000%
M. smithii 0.04% 99.840% 87.175%
P. corporis 5.37% 99.561% 99.561%
R. hominis 3.88% 100.000% 100.000%
S. cerevisiae 0.18% 69.522% 39.556%
S. enterica 0.02% 6.232% 4.619%
V. rogosae 11.02% 100.00% 100.000%

hifiasm-m rust-mdbg

Running time 34h29m 55s
Memory usage 83 GB 0.9 GB
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For > 1% error rates: Minimizer-space POA error correction

(base-space POA: Lee et al, 2002)

m1 m2 m3 m2

m4 m11 1 1 1

12 2

m1m2 m3

   Final consensus

ACGGATTCACGGAA
m3m2m1 m1

ACAGATTCCGGTA
m2m1m4

ACGGATTCCGGAAT
m2m2m1 m3
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For > 1% error rates: Minimizer-space POA error correction

(base-space POA: Lee et al, 2002)
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So, not quite ready for Nanopore data (≥ 5%).
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Results: Pangenome graph of 661,405 bacterial genomes

Dominant species

+ 725,820
connected 
components

Taxons in component 18

Mycobacterium 
tuberculosis

4

Burkholderia 
gladioli

22

Salmonella 
enterica

22

Pseudomonas 
protegens

10

Cupriavidus 
alkaliphilus

Largest 5 
connected
components:
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Biological results: Querying AMR genes

Graph query
ACATGAAGATGACGATTACC

ACATAAATAC AT  AC
Convert to minimizer-space

Query each k-min-mer

Min-space query coverage : 2/3

ACATAAATAC

ATAAATACAT

AAATACATAC

Retrieval of AMR genes

AMR genes
database

1,279 genes
(AMRFinderPlus)

N
um

be
r 

of
  A

M
R

 g
e

ne
s

Min-space query coverage (%)
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Part 3 (short)



K and U problems

Known problems

Can outline research plan.

E.g.:

- mDBG

- BCALM2

- REINDEER

Unknown problems

Previously thought impossible.

E.g.:

▸ ▸ Minia

▸ BOSS

▸ pugz
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Conclusion



Future directions

In the dBG area:

- Representations of multiple samples: REINDEER, BFT, HowDeSBT, MetaGraph, etc..
(Marchet et al review in Genome Res’20)

- Efficient storage of abundances: Italiano et al; Shibuya & Kucherov, . . .

- Best adaptation to long reads: wtdbg2, mdBG, Flye, . . .

- Disk compression: SPSS, Simplitigs, . . .

- A standard file format: github.com/Kmer-File-Format

And advising team projects:

- Metagenomics strain assembly

- Ancient DNA decontamination

- Structural variants detection

- Sequence transformations

31
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And former students: Camille Marchet, Pierre Marijon, Maël Kerbiriou
And all my current and previous collaborators: I had a wonderful list but it was too long to fit inside this slide <3
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Bit vector optimality

- A de Bruijn graph only needs to records the nodes.

- Bijection between sets of nodes and binary vectors of length 4k .

- How many different bit vectors of size 4k and n 1’s?

(
4k

n
)

- Thus, minimal number of bits to store a dBG:

log2((
4k

n
))

- A compressed bit vector achieves this optimal space.

- (This is much smaller than O(kn), the hash table storage)
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Caveats

- Only a subset of approaches were presented

- Ignored query times

- Ignored associated info (e.g. k -mer abundances)

- Ignored analysis environment (error-correction, assembly algorithms)

- Ignored multi-k

- Ignored reverse-complements

- Ignored the rest of the bioinformatics field, biology, etc..
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Recommended readings
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