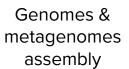
Big Biological Data

Rayan Chikhi

Institut Pasteur

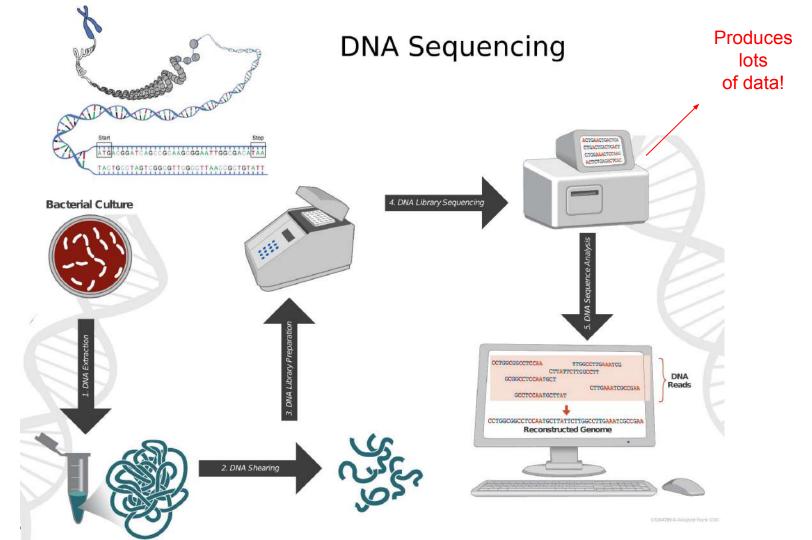
TUDASTIC 2022


Sequence Bioinformatics

Institut Pasteur Computational Biology Department

Algorithms and data structures on k-mers

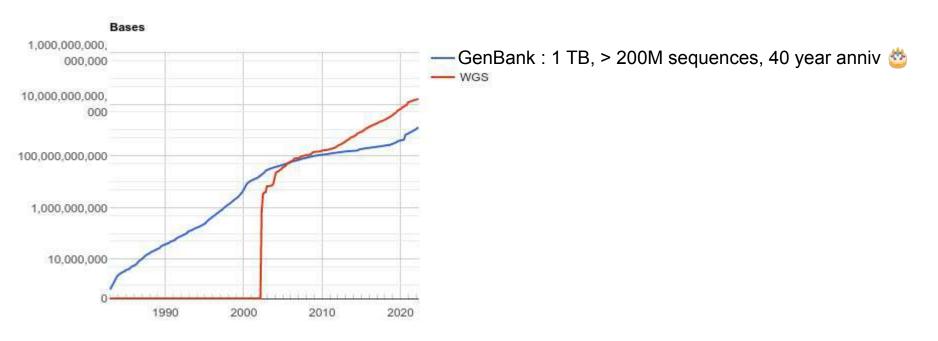
Sequence search in very large datasets


Pangenomics

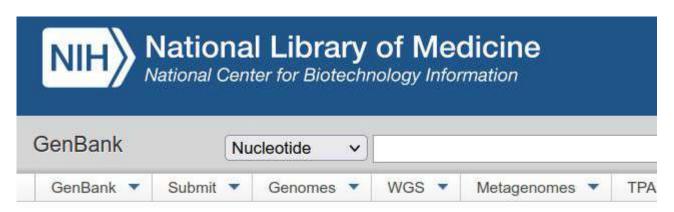
Rationale

Introduction to biological datasets

From a computer science perspective



2 types of genomic data


- Raw reads
 - Error-prone
 - Many low-abundance distinct k-mers

- Assembled sequences
 - High quality
 - From incomplete gene, plasmids, to complete chromosomes

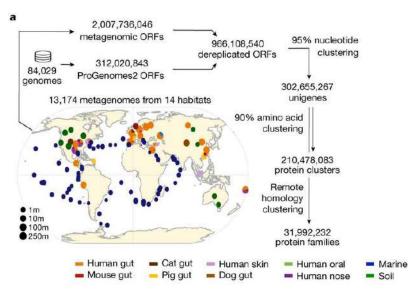
Explosion of available assembled genomes

TSA

Transcriptome Shotgun Assembly Sequence Database

Type: assemblies

Size: 474 GB (<u>April 2022</u>)


Diversity: high

dBG??

31-mers: ? FM-Index? ?

What to mine: inter-species transcripts, RNA viruses, cancer isoforms? (ask Camille)

GMGC (Global Microbial Gene Catalogue)

Article | Published: 15 December 2021

Towards the biogeography of prokaryotic genes

Luis Pedro Coelho ☑, Renato Alves, Álvaro Rodríguez del Río, Pernille Neve Myers, Carlos P.

Cantalapiedra, Joaquín Giner-Lamia, Thomas Sebastian Schmidt, Daniel R. Mende, Askarbek Orakov, Ivica Letunic, Falk Hildebrand, Thea Van Rossum, Sofia K. Forslund, Supriya Khedkar, Oleksandr M.

Maistrenko, Shaojun Pan, Longhao Jia, Pamela Ferretti, Shinichi Sunagawa, Xing-Ming Zhao, Henrik

Bjørn Nielsen, Jaime Huerta-Cepas ☑ & Peer Bork ☑

Nature 601, 252-256 (2022) | Cite this article

Type: assemblies Size: 124 GB .gz Diversity: high

dBG??

7-mer AA index: done

FM-Index??

What to mine: microbial genes, associations to

habitat, associations to abundances

(Many examples of mining here:

https://www.nature.com/articles/s41586-021-04233-4)

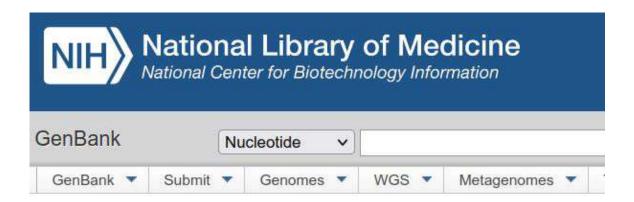
GenBank

Particularity: all sequences are annotated

Type: assemblies

Size: 1.2 TB (<u>April 2022</u>)

Diversity: high


dBG??

BLAST database: yes

What to mine: genes,

association sequences/annotation

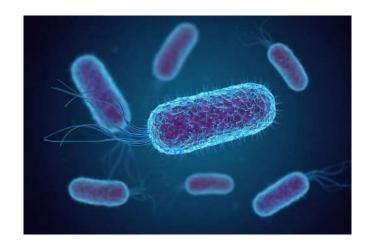
WGS

Whole Genome Shotgun Submissions

What is Whole Genome Shotgun (WGS)?

Whole Genome Shotgun (WGS) projects are genome assemblies of incomplete genor eukaryotes that are generally being sequenced by a whole genome shotgun strategy.

Type: assemblies


Size: 16 TB (<u>April 2022</u>)

Diversity: high

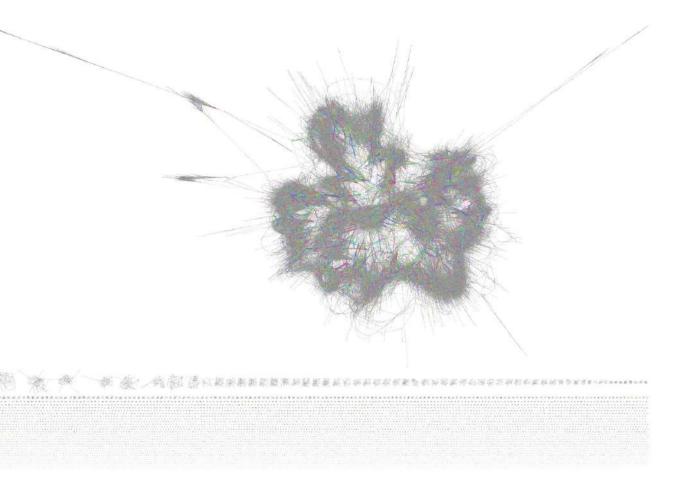
dBG? no # 31-mers: ? FM-Index? no <u>Difference with GenBank</u>: sequences are not

necessarily annotated

All E.Coli genomes

Type: assemblies Size: 255 GB .gz Diversity: low dBG? feasible

sequences: 29,865,149


10-min-mers (d=0.001): 10,919,184

FM-Index? feasible

Availability: ask me

What to mine: pangenome, HGT, genomic islands, SNPs, ..

167,000 E. coli's mdBG

Many GenBank "divisions"

Table 1. GenBank divisions

Division	Description	Base pairs ^a
WGS	Whole genome shotgun data	8 841 649 410 652
TSA	Transcriptome shotgun data	381 148 464 834
PLN	Plants	269 438 877 546
BCT	Bacteria	98 827 135 660
VRT	Other vertebrates	63 565 835 430
EST	Expressed sequence tags	43 301 109 577
TLS	Targeted Loci Studies	27 825 059 498
HTG	High-throughput genomic	27 781 778 663
PAT	Patent sequences	26 452 787 091
GSS	Genome survey sequences	26 378 695 300
MAM	Other mammals	20 844 388 122
INV	Invertebrates	19 759 935 222
ROD	Rodents	12 090 011 771
PRI	Primates	8 767 435 622
SYN	Synthetic	7 932 542 985
ENV	Environmental samples	6 755 612 180
VRL	Viruses	5 824 026 918
PHG	Phages	782 571 323

Source:

https://academic.oup.com/nar/article/49/D1/D92/5983623

Blackwell, .., Iqbal's 661k bacterial genomes collection

Type: assemblies

Size: 2.5 TB

Diversity: medium

dBG? yes

31-mers: unreported FM-Index? not yet

Results: Pangenome graph of 661,405 bacterial genomes

Data from Blackwell et al, 2021:

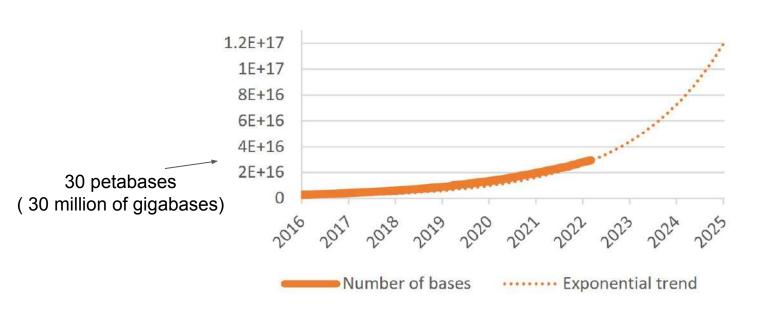
- 2.9T 661k_assemblies.fa
- 1.6T 661k_assemblies.fa.lz4

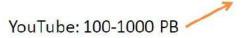
rust-mdbg -k 10 -l 12 --density 0.001 --minabund 1 661k_assemblies.fa.lz4

SRA

Type: reads Size: 30 PB

Diversity: extreme


dBG? never


31-mers: unreported

FM-Index? never Index made: STAT

Growth of the Sequence Read Archive

NCBI SRA database: 30 PB

Institut Pasteur: 8 PB

Your laptop: 0.001 PB

NCBI STAT

A recent indexing *tour de force* that it nearly unknown to the community.

"we have processed more than 27.9 Peta base pairs from runs"

Taxonomic indexing of 32-mer minimizers in 64bp windows Size: 75 GB (dense version)

```
Taxonomy Analysis
 Unidentified reads: 40.04%
 Identified reads: 59.96%
  ssRNA viruses: 50.55%
      LMeasles morbillivirus: 50.55%
   dsDNA viruses, no RNA stage: < 0.01%
    ssDNA viruses: < 0.01%
   Ortervirales: < 0.01%
  cellular organisms: 9.4%
   Bacteria: 6.44%
     Proteobacteria 1.76%
     Terrabacteria group: 0.48%
     Acidobacteria: < 0.01%
    Eukaryota: 1.94%
```

The STAT paper is great

Many nuggets:

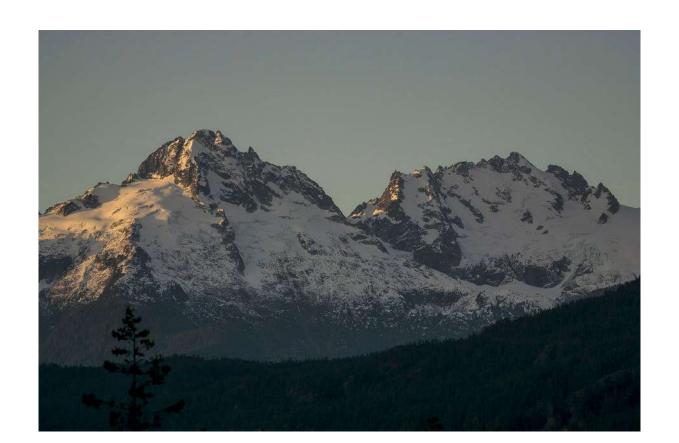
"[..] It is estimated that as little as 30–80 statistically independent single-nucleotide polymorphisms (SNP) can uniquely identify an individual human [..]"

"[..] the BLAST® refseq_genomes database is 1.4 terabytes (tb) [..]"

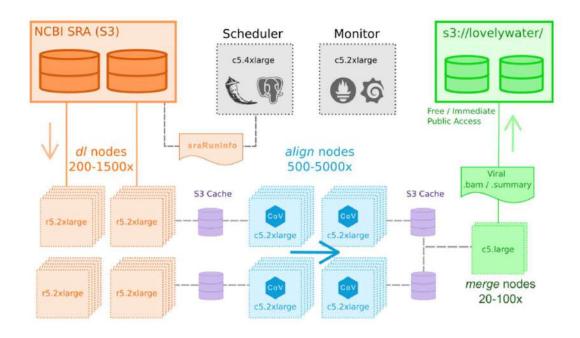
"[..] we released a detection tool containing aligns_to and a Virus "dbs" that allows users to map k-mers found in NGS data to taxa included under Coronaviridae [..]"

Serratus 2020-2021 assemblies

Type: assemblies


Size: 6 TB

Diversity: high


dBG? no

31-mers: 1,500 B

FM-Index? no

Serratus architecture

- Aggressively cost-optimized
- Native access to SRA on S3
- Dynamic scaling up to ~22,250s vCPU
- Open Source: GPLv3

SRA also available @ Google Cloud, https://datascience.nih.gov/strides

In this thread we are releasing a concatenated FASTA file of all assemblies produced by Serratus: 59,256 SRA accessions, 5.9 terabases total.

Uros @uki156 · Mar 22 Replying to @RayanChikhi

When you said "in this thread we are releasing", I was hoping you were actually going to tweet out the entire thing

Giulio Ermanno Pibiri @giulio_pibiri · Mar 22 Looks like the ultimate indexing challenge has been set!

The "nr" database of BLAST

"The nucleotide collection consists of **GenBank**+EMBL+DDBJ+PDB+RefSeq sequences, but excludes EST, STS, GSS, WGS, TSA"

[..] "The database is non-redundant."

125 GB compressed

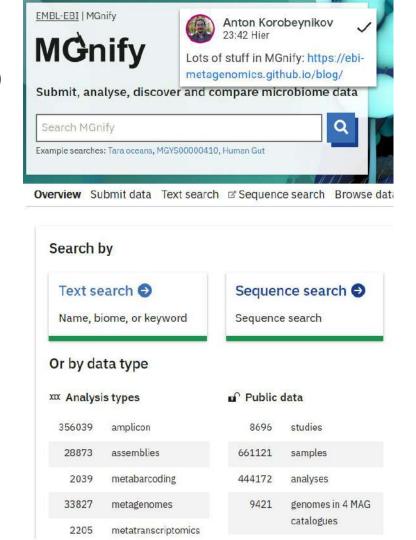
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz

PS: "refseq_genomes" database: 1.5 TB [ref: STAT]

Many others (often metagenomic)

Resource Open Access Published: 20 July 2020

A unified catalog of 204,938 reference genomes from the human gut microbiome


Alexandre Almeida ☑, Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Beracochea, Zhou

Jason Shi, Katherine S. Pollard, Ekaterina Sakharova, Donovan H. Parks, Philip Hugenholtz, Nicola

Segata. Nikos C. Kyrpides & Robert D. Finn ☑

Nature Biotechnology 39, 105-114 (2021) | Cite this article

MGNify: a database of assemblies of metagenome studies from ENA searchable by metadata

Conclusion

Text indexing community: What can we do with so much data?

- Index it
 - MinHash sketches
 - k-mers
 - o k-min-mers
 - BWT
 - o r-index
- Compress it
 - o gz, xz
 - AGC: Compact representation of assembled genomes

 Sebastian Deorowicz, Agnieszka Danek, Heng Li
 doi: https://doi.org/10.1101/2022.04.07.487441

And if possible, make biological discoveries from it!