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Metagenome assembly

Reconstruct genomes of species, possibly even strains, from
short read sequencing data of an environment
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44 years of genome assembly

- 1977: First complete genome assembled
(phi X 174)

- 2003: Human Genome Project completed
- 2014: First $1,000 genome

- 2021: Truly completed
(Telomere-2-Telomere)

Genome (unknown)

DNA sequencing data

Reads

Assembly (hypothesis of the genome)

Contigs



Additional challenges

closely related strains
uneven depths, & low depths
inter-species repeats

size of datasets

5. lack of long reads
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(adapted from A. Korobeynikov)
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Fig: Olsen et al, 2017



Metagenomic assembly is impossible

Two competing goals:
— assemble similar sequences from related genomes together
— do not assemble similar sequences from unrelated genomes

GCCTCCCGTAGGAGTITGGACCGTGTCTCAGTICCAATGTGGGGGACCTT
CATGCTGCCTCCCGTAGGAGTTTGGA CGTGTCTCAG CAATGTG

TCCCGTAGGAGTCTGGTICCGTGTCTCAGTACCAGTGTGGGGGACCTTCCTC

Mihai Pop, Sergey Koren, Dan Sommer

Slide credit: H. Touzet



Metagenome assembly software

- metaSPAdes
- MEGAHIT

- metaFlye (LR)
- Minia-pipeline
- IDBA-UD

- Ray-meta

- SOAPdenovo2
- metaVelvet/-SL
- Omega

- InteMAP

- Meraga

- Velour

- A*

[Nurk et al, Genome Res., 2017)
[Li et al, Methods, 2016]
[Kolmogorov et al, bioRxiv, 2019]

[mel]



Under the hood of metagenome assemblers




k-mers

k-mer: any sequence of length k

N.G. de Bruijn (1946), C. Shannon (1948),
de Bruijn sequences '

information theory 2

'construct shortest sentence containing all k-mers exactly once
2predict future data given past data, where past = last seen k-mer



de Bruijn graphs

A de Bruijn graph for a fixed integer k:
Nodes = all k-mers in the reads

Edges = all exact overlaps of length exactly (k-1)
between k-mers

Example for k = 3 and a single read:
ACTG

ACT =3 CTG



de Bruijn graph

Example for many reads and still k = 3.

ACTG
CTGC
TGCC

ACT =3 CTG =39 TGC =¥ GCC
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de Bruijn graph: redundancy

What happens if we add redundancy?

ACTG
ACTG
CTGC
CTGC
CTGC
TGCC
TGCC

dBG, k =3:

ACT =3 CTG =39 TGC =¥ GCC



de Bruijn graph: errors

How a sequencing error (at the end of a read) impacts the de
Bruijn graph?

ACTG
CTGC
CTGA

TGCC

dBG, k = 3:
ACT =3 CTG =39 TGC =¥ GCC

N\

TGA



de Bruijn graph: repeats

What is the effect of a small repeat on the graph?

ACTG
CTGC
TGCT
GCTG
CTGA
TGAT

dBG, k =3:

ACT =3 CTG =9 TGC

N\

GAT <= TGA GCT

13



de Bruijn graph: SNPs

SNPs can be directly “found” in the graph.

AGCCTGA
AGCATGA

dBG, k = 3:

GCC =39 CCT =¥ CTG
AGC TGA

GCA =3 CAT =3 ATG
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Exercice

Imagine you are a genome assembly software that converted
reads into these k-mers:

. ACA
AGA
. AGT
. CAT
. GTC
. TAG
. TCA
8. TTIG

~N O 0w N

They correspond to two strains of a short genome, please
assemble those k-mers. Warning: one k-mer could be missing
due to low coverage. ignore reverse-complements



Exercice: solution

AGT =3 GTC =3 TCA

% N\

TAG CAT

N\ /

AGA ACA

Discard TTG (connected to nothing)
Observe a k-mer was missing (GAC)
Two strains: TAGTCAT, TAGACAT
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Short read assemblers
1) de Bruijn graph construction
7

2) Likely sequencing errors are removed.

—

—

3) Variations (e.g. SNPs, similar repetitions) are removed.
— Collapses strains
4) Simple paths (i.e. contigs) are returned.

_—0—0—0
o—o—0—0—0_ e

o000
5) Extra steps: repeat-resolving, scaffolding
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MEGAHIT

input reads R

count (k . +1)-mer,
output solid & mercy edges

¥
[ on |
¥ graph
‘—[ build SdBG of order k f—/. construction
' simplifications

remove tips; merge bubbles; progressively remove /(errors & variants)
low local coverage edges; output contigs C, -1

i

k — Kk + step |

e )

Yes

Extract (k+1)-mers from /output contigs

reads R and contigs C,

18



Graph construction
& simplifications

Further repeat-resolution

metaSPAdes

Consensus-contigs

Output contigs
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Short read assemblers

have matured

now tend to converge towards similar ideas
mostly useful for metagenomics, transcriptomics
also for large instances (ABySS2, MEGAHIT)

— Careful recovery of low-abundance k-mers, graph
simplifications, multi-k, heuristic scaffolding
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Multi-k

Input reads\‘\\
Assembler |l Assembler il Assembler
k=21 k=55 k=77
\

Final assembly

In principle, better than single-k assembly.
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Visualization of multi-k graphs

Salmonella genome, SPAdes assembly
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In contrast, with single-k

Salmonella genome, Veret assembly
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k =91 (too high, but shown for comparison)

https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size
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Assembly graph visualization: Bandage
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Metagenomics with long reads

Higher contiguity, higher quality. Use whenever possible.

metaFlye [Kolmogorov et al, 2019
wtdbg2 [Nicholls et al, GigaScience, 2019
Canu [see wtdbg2 article]

miniasm + Racon

(See the Strainberry talk next week!)

Oxford Nanopore: needs polishing

Hi-C
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When can you assemble

Look at k-mer histograms of the reads. (KMC, DSK, Jellyfish)

count
count

Kmer abundance Kmer abundance

Credit: www.cmbi.ru.nl/~dutilh/metagenomics/course_HAN_2014/Speth.pdf
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www.cmbi.ru.nl/~dutilh/metagenomics/course_HAN_2014/Speth.pdf

Why you need > 30x coverage per genome

Probability that a base is not covered: e~¢°verdge
(Lander-Waterman)

coverage probability

5

10
15
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25
30

100

0.007
0.000045
3*10-7
2*10-9
1.4*10-11
9.4*10-14

3.7*10-44
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Dealing with high coverage:
Digital Normalization
https://github.com/dib-1lab/khmer

ol

Reduces dataset size
Facilitates assembly

.
assembly fragmentation, maybe
loss of low-coverage variants

Why you shouldn’t use digital normalization
http://ivory.idyll.org/blog/
why-you-shouldnt-use-diginorm.html
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https://github.com/dib-lab/khmer
http://ivory.idyll.org/blog/why-you-shouldnt-use-diginorm.html
http://ivory.idyll.org/blog/why-you-shouldnt-use-diginorm.html

Evaluation metrics

Same as regular assembly:

N50, NG50

Total size

% of reads mapping correctly back to the assembly
Number of predicted genes

% of contigs matching some known references

Metagenome-specific:
metaQUAST
CheckM, marker genes, [Parks et al, Genome Res. 2015]
VALET, internal consistency, [Olson et al, BFB 2017]
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CAMI benchmark

- 3 artificial communities
*» low, medium, high complexity (600 genomes, 5x15 Gbp)
- 6 assemblers evaluated: MEGAHIT, Minia, Ray-meta, ..
Critical Assessment of Metagenome
Interpretation—a benchmark of
metagenomics software

Alexander Sczyrba , Peter Hofmann [...] Alice C McHardy

Nature Methods 14, 1063- 1071 (2017) Received: 29 December 2016

doi:10.1038/ nmeth.4458 =d: 25 August 2017

Download Citation Published online: 02 October 2017

— CAMI2 paper out recently!
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Metagenome assemblies vs coverage

Coverage

Too low coverage? won’t reconstruct.
Too high coverage? won’t reconstruct.
Close strains? won’t reconstruct.

uyebon

B

Genome Group

circular elements
~©- strains (ANI >= 95%)
B+ unique (AN <95%)

PIEPUEIS PIOD

1000

[Sczyrba, Nat Meth 2018]
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Quality of metagenome assembly

b: genomes with ANI >= 95 % (strains), c: genomes with ANI < 95%

b c
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[Sczyrba, Nat Meth 2018]

For different species: Meraga, Megahit, Minia did well.
No assembler could reconstruct close strains.
metaSPAdes is great but couldn’t process this dataset.



Mosaic DNANexus Challenge 2018

Focus on strains assembly Evaluation metrics:

_( ; Genome Fraction

,;Osoic misassemblies
Method N50 Genome Fraction # misassemblies
Aregular assembler 7.1 Kbp 84.1% 1998
Initial step (BCALM) 0.5 Kbp 95.3% 23
& (S. Nurk:) don’t do it
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Bloomberg

Business

DNAnexus-Powered Mosaic Microbiome
Platform Announces Winners of First
Community Challenge

— even evaluating metagenome assemblies is hard
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Conclusion

Metagenome assembly is a hard problem
Due to strains & low-abundance species, mostly

Trade-off between contiguity, and genome
fraction/misassemblies. Questions on assemblies ranking.

So far, limited availability of: long reads, Hi-C, linked-reads
out of RAM? https://github.com/GATB/minia-pipeline
HiFi reads? let’s chat about minimizer-space dBG

A reference:

Ayling et al, New approaches for metagenome assembly with
short reads, 2019

Acknowledgments: Dag Ahren, Sergey Nurk, Camille Marchet, Antoine
Limasset, the fantastic team of the Workshop on Genomics 2020, Chris
Quince, Aaron Darling, Guillaume Rizk, Claire Lemaitre, Pierre Peterlongo,
Charles Deltel, Paul Medvedev, Dominique Lavenier
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https://github.com/GATB/minia-pipeline

Lex Nederbragt
/ @lexnederbragt

En réponse a

"Finding your way in life is like finding the
genome in a De Bruijn graph: it is very easy to
find *a* path, very hard to find *the* path”.

36



Human fecal
samples

‘T

N A

Isolate
strains from
samples

Microbial
Cocktail 1

—

Mosaic DNANexus Challenge 2018

Evaluate

Seq
Reads
(Diet 1)

A 3 2@ Performance
8 O
I \

v v
Seq Seq Seq
Reads Reads Reads
(Diet2) (Diet3) (Diet4)

Microbial
Cocktail 2

L—»
“a

Y <4 %
I

Training dataset
Truth

sequencing

Seq
Reads
(Diet 1)

v v

Seq Seq Seq
Reads Reads Reads
(Diet2) (Diet3) (Diet4)

Challenge dataset

e e . I
. &S Ifﬁr .ffj.f 4 s
* ‘

and

assembly

37



