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Abstract. In the last decade in bioinformatics, many computational
works have studied a graph data structure used to represent genomic
data, the de Bruijn graph. It is closely tied to the problem of genome
assembly, i.e. the reconstruction of an organism’s chromosomes using a
large collection of overlapping short fragments. We start by highlighting
this connection, noting that assembling genomes is a computationnally
intensive task, and then focus our attention on the reduction of the space
taken by de Bruijn graph data structures. This extended abstract is a
retrospective centered around my own previous work in this area. It
complements a recent review [10] by providing a less technical and more
introductory exposition of a selection of concepts.
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1 Context

Let us travel back in time in 2008, when the problem of reconstructing genomes
using DNA sequencing, termed de novo genome assembly, had a rebirth as an
active area of research within many computational research groups. It was a
somewhat “fresh” problem at the time: many genomes were already assembled,
e.g. the Human Genome Project completed at the beginning of the 2000s, yet
performing the assembly of any organism was just starting to be within reach for
most biological labs. The vast majority of organisms did not have their genomes
assembled (and as of today: they still do not). So the challenge was to create
software that any individual lab could use, not just large organizations. The main
type of data at the time were short reads, i.e. fragments of around 100 nucleotides,
meaning that only a tiny fraction of a genome could be read contiguously at a
time. (Genomes of viruses are in the order of thousands of nucleotides, but
for most other organisms they range from millions to billions.) By repeatedly
sequencing fragments from random locations, reads would significantly overlap
which makes genome reconstruction possible. Short reads were produced mainly
from the company Illumina, still a market leader on DNA sequencing today;
some of the previous technologies (e.g. 454) were on their way out.

The EULER-SR assembler was one of the first specialized genome assembly
software for short reads, and it came out in 2008. It achieved an assembly of
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a bacterium (E. coli) in 199 pieces [9]. This means that the genome was near-
completely reconstructed, yet in a fragmented way to due ambiguities. This may
seem unremarkable by current standards, as nowadays we can reconstruct nearly
all bacteria in a single piece per chromosome. Yet the task was fundamentally
hindered by the length of the short reads. Still, at the time it was clear that the
next frontier would be to assemble larger genomes, e.g. animals or plants, even
if the final assembly would still be largely fragmented.

The widely-used Velvet [43], ABySS [41] and SOAPdenovo [24] assemblers
appared in the following two years. And indeed, the last two were able to assem-
ble a human genome using a cluster or a single large-memory machine. These
assemblers were all based on a certain representation of the input data, the de
Bruijn graph, that we will explain in the next section. These graphs come from
mathematics and had not yet been widely used outside of some networking appli-
cations. This was before the era of more advanced assemblers (IDBA/SPAdes [37,
3]); early assemblers only constructed a single graph, as opposed to iterating over
multiple graphs with different parameters.

Even so, the construction of a large de Bruijn graph was the most computation-
intensive step of genome assembly at the time. This should come as no surprise,
as 1) this was the first period in history when one had to construct large de
Bruijn graphs in any domain; there existed no previous litterature describing
how to do it efficiently, and no software library. 2) It did not matter so much
if construction was slow or memory-intensive, as long as some large-memory
machine managed to run it. 3) The volume of input data was really large by
historical standards: in the order of a hundred of gigabytes in compressed form.
Yet, as genome assembly later became a routine task, along with the advent of
huge instances such as metagenomics (the analysis of multiple genomes at once),
the efficient construction de Bruijn graphs naturally became a critical aspect of
genome assembly. It also turns out that de Bruijn graphs would be useful for
other biological sequence analysis tasks, such as the sequencing of RNA [35],
the compression of genomic data [20], and the detection or representation of
variations across a single or multiple genomes [16].

The goal of this extended abstract is to retrace some of the steps that the
community and I took towards achieving space-efficient representations of de
Bruijn graphs, starting from the initial attempts in the first assemblers, making
a detour through theoretical lower bounds, and finishing with current advances
and some perspectives.

2 Problem formulation

Let us introduce some of the concepts. A DNA sequence is seen as a string over
four possible characters (A,C,T,G). A k-mer is a portion of DNA sequence of
length k, e.g. ACT is a 3-mer. The de Bruijn graph is a directed graph where
nodes are k-mers, and edges are the exact suffix-prefix overlaps of length k − 1
between two nodes; e.g. ACT→CTA or AAA→AAT, but ACT and AAA are not
connected by an edge. See Figure 1 for another example. Note that in practice, k
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is typically greater than 20. A de Bruijn graph is constructed by inserting all the
possible k-mers present in an input dataset. If the same k-mer is seen multiple
times, all of its occurrences are associated to the same node.
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Fig. 1. Left panel: example of a toy reference genome sequence, a set of 3 sequenced
reads, and the corresponding 4-mers extracted from the reads. Right panel: the de
Bruijn graph constructed these reads with k = 4 and drawn using a circular layout.

The scientific question we will be interested in can be informally stated as
follows: given a set of nodes of the de Bruijn graph, stored on disk, construct an
in-memory representation1 that supports a reasonable subset of standard graph
operations, e.g. determine all the neighbors of a node, determine if some putative
node is present or absent, etc. The representation should take as little memory
as possible, and answer queries reasonably fast, although as we will see next, the
main limiting factor here is typically not the query time but the representation
size.

Note that prior to circa 2012, the problem as stated above was not recognized
as its own area of investigation within bioinformatics nor computer science. Ar-
guably it became one when several data structures were published as stand-alone
articles [14, 13, 5].

3 Caveats

We will focus here on only a selection of major milestones, where space usage was
reduced, ignoring other features such as query times. The presentation will also
sacrifice some technical accuracy in favor of accessibility. For a more complete
and technical exposition, please refer to this review [10].

Note that genome assembly cannot be reduced to the representation of the
de Bruijn graph. In fact, many older tools even used different paradigms [32].
1 Such a representation is also often called a data structure, and the abstract model
that encompasses all the data structures supporting the same operations is called
an abstract data type.
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Among those which do use a de Bruijn graph, they implement many steps before
(e.g. error correction) and after (e.g. graph cleaning) the construction of the
graph that crucially affect results quality. However, for the sake of keeping the
story coherent, we will set aside this broader environment to focus solely on the
efficiency of graph representation.

4 The early days

The early assembly programs from the 2008–2010 era did not particularly aim
to optimize the space usage of de Bruijn graphs. Therefore, their memory usage
may be seen as wasteful by current standards, yet they laid the bases for future
progress.

The EULER-SR assembler reported building the graph using what they de-
scribe as “an efficient hashing structure” which was then transformed into a
sorted list of vertices, queried using binary search. Notably, k-mers were repre-
sented explicitly as strings.2

Similarly the Velvet assembler, published the same year, used a hash table to
record for each k-mer “the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read”. It is natural to want to keep
track of where each k-mer is coming from, however as we will see next, storing
this information in the graph is prohibitively expensive. The authors note: “The
main bottleneck, in terms of time and memory, is the graph construction. The
initial graph of the Streptococcus reads needs 2.0 [gigabytes] of RAM.” Given
that the Streptococcus genome is 2 million nucleotides in length, and under the
assumption that there were roughly 10x more erroneous k-mers than correct
ones, we infer that the de Bruijn graph representation of Velvet required in the
order of 100 bytes per k-mer.

The SOAPdenovo assembler followed the Velvet assembler strategy, except
that its authors realized that one could achieve nearly identical (or even bet-
ter) results despite discarding a lot of space-intensive information in the hash
table (i.e. read locations and paired-end information). Its graph representation
required 120 GB of memory for storing 5 billion nodes of a human genome [32],
i.e. around 24 bytes per k-mer. This prowess demonstrated that the quality of
genome assembly was not sacrified when trimming down the de Bruijn graph
data structure. There existed some minimal set of supported operations that
would make a de Bruijn graph fit for purpose, although this set was not de-
scribed at the time. As long as a data structure would support all these features,
then computer scientists would be free to optimize it as much as they could.

The Meraculous assembler, published in 2011, took a radically different ap-
proach by storing the de Bruijn graph using collision-free hashing. Its represen-
tation only supports the lookup of the next nucleotide following a k-mer (i.e.
the out-neighbor of a node), where k-mers having multiple out-neighbors were
2 The total space usage of the graph was reported to be O(L) ∗ (v + k) bytes, where L
is the genome size, k is the k-mer length and v is the memory allocated per vertex,
reported to be 40 bytes.
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previously discarded during a pre-processing step. As in other assemblers, there
are further steps taken to attempt to “fill the gaps” between the discarded k-
mers and to orient the assembled fragments, yet these are outside our current
scope. The Meraculous de Bruijn graph structure does not support enumeration
of vertices. Despite the apparent minimality in terms of supported operations,
it appeared to be sufficient for enabling genome assembly. While this technique
was not further re-used by other assembly tools, we revisited it 6 years later to
develop the general-purpose minimal perfect hashing library BBHash [25].

5 The birth of a line of research

The years 2011–2012 saw a remarkable amount of independent contributions
proposing new ways to represent the de Bruijn graph in a space-efficient man-
ner. In retrospect, the field was ripe for such contributions as there was an
important problem to be solved (genome assembly of human genomes was tak-
ing a prohibitive amount of memory), which was well-defined computationally3,
and there were no previous "clever" solutions apart from using off-the-shelf data
structures.

To my knowledge, the first article on this topic was published in 2011 by T.
Conway and A. Bromage [14]. They describe an encoding of the de Bruijn graph
using an existing state-of-the-art efficient encoding of bit arrays. Furthermore,
they also show that their representation is ’optimal’, in the following sense:
information theory dictates that any other exact de Bruijn graph representation
will have to use as many bits per k-mer in the worst case. The key words of
the previouse sentence are “exact” and “worst case”, and we will revisit this
statement later in this document. But for now, it is sufficient to note that to this
date, the Conway-Bromage data structure is provably optimal. Then, does this
mark the end of the line of research on the representation of de Bruijn graphs?

Not quite, despite the lower bound argument being convincing. We will briefly
expose it here. Observe that to represent a de Bruijn graph, one only needs to
represent its vertices4. The edges are indeed implicit in the representation, as
one could determine all the neighbors of a certain k-mer by querying for the
presence of all the potential k-mers shifted to the left or to the right.

Then, a bijection is established between the set of all possible sets of n
vertices, and the set of all possible binary vectors having n ones and 4k − n
zeros. The bijection is actually rather straightforward: each k-mer is directly
encoded as an integer in base 4 (see Figure 2 middle panel), and a bit vector has
a 1 at position i if and only if i is the encoding of a k-mer that belongs to the set
3 At least implicitly, as to my knowledge, it has not been explicitly formulated as an
open question in an article.

4 We omit a technicality here that will only be of interest to specialists. We only
consider node-centric de Bruijn graphs. For edge-centric de Bruijn graphs, the argu-
ment stated in this paragraph does not apply. Yet, edge-centric graphs are tightly
related to node-centric ones and in practice, using one definition or the other does
not matter.
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of graph vertices. Since the number of possible bit vectors is classically known,
one deduces that to represent a de Bruijn graph for a certain parameter k having
n vertices, one must uses in the worst case as many bits as the logarithm of the
number of possible bit vectors of size 4k that have n ones.
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Fig. 2. Example of a de Bruijn graph (top left panel) and three possible encodings.
Top right panel: hash table, each node is inserted at a position given by a random hash
function. The collision between TG and AC is resolved using linear probing, i.e. by
inserting AC at the next free slot in the table. The load factor is number of occupied
cells over total cells. Middle panel: bit vector, storing each node converted into an
integer using the classical binary encoding of characters A,C,G,T=00b,01b,10b,11b,
where b indicates that the number is written in binary. Bottom panel: Bloom filter,
where each node is inserted at a position given by a random hash function. Two false
positives nodes (CC, AG) are shown in red. They arise because the hash function causes
collisions between any possibly existing node and true nodes.
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6 Beating the lower bound (by inexactness)

As it turns out, this lower bound did not discourage researchers from proposing
data structures that exhibited even lower space usages in practice than those
dictated by the bound. One such data structure is the encoding of a de Bruijn
graph using a Bloom filter by Pell et al [36] (Fig 2). By inserting all the vertices
of the graph inside a probabilitic membership data structure (here, the Bloom
filter), it is possible to represent a set of k-mers approximatively. The trade-
off is then that the graph is not exactly represented, yet the space usage is an
order of magnitude lower than the one dictated by the Conway-Bromage lower
bound: around 4 bits per k-mer. Pell et al showed that despite having many
false positive nodes resulting from the approximate representation, it was still
possible to perform useful analysis on the graph – not quite genome assembly,
but another related task (read partitioning).

Following this, G. Rizk and I proposed to extend this representation to make
it exact within a certain setting, and perform genome assembly [13]. Due to the
lower bound, any attempt at removing all the false positives of the Bloom filter
would result in a data structure that would necessarily be at least as large as the
one from Conway-Bromage. The key insight was to realize that only a fraction
of the false positives of the Bloom filter mattered: those which were neighbors of
a true positive vertex. By explicitly storing them in a “blacklist” hash table, our
data structure managed to represent a graph in typically ≈ 13 bits per k-mer5,
and the neighbor query operation would be exact. This “beats” the Conway-
Bromage bound by a factor of roughly 2x. The caveat is that the representation
is not exact everywhere, but as long as a user traverses the graph from a true
positive vertex, then the representation would act identically to the exact one.
We implemented this data structure inside a genome assembler, Minia [13].

Another instance of an inexact de Bruijn graph representation is the sparse
de Bruijn graph [42], which is a de Bruijn graph that skips g intermediate k-mers,
providing roughly a 1/g space saving, where g was set to 16. Finally, along the
same line of thought the A-Bruijn graph formalism [26] selects an arbitrary set
of strings, and creates an edge when two strings appear consecutively in at least
one read. This concepts generalizes de Bruijn graphs; yet A-Bruijn graphs may
contain one or several orders of magnitude less nodes than de Bruijn graphs.
There are some potentially interesting parallels between A-Bruijn graphs and
sparse de Bruijn graphs, yet to the best of my knowledge they have not been
explored.

7 Beating the lower bound (by instance specificity)

Independently of Minia, and presented at the same session of the WABI confer-
ence in 2012, the BOSS data structure proposes a completely different yet exact
de Bruijn graph representation [5]. It uses a variant of the Burrows-Wheeler
5 Which would later be improved by Sahlikov & Kucherov to ≈ 8.5 bits per k-mer,
using cascading Bloom filters [40].
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space usage in bits/node

3.25 6 8.5 22 192

SOAPdenovo (2009)

Velvet (2008)

Conway-Bromage (2011)

Minia (2012, 2014)

BOSS (2012, 2015)

Nav. lower bound (2014)

Fig. 3. Space taken by various representations of de Bruijn graphs, in bits per node.
“Conway-Bromage” is both the Conway-Bromage exact lower bound and its matching
upper bound. "Nav. lower bound" is the navigational lower bound for general de Bruijn
graphs from [11]. BOSS is the flavor of [23].

transform specifically tailored for k-mers. A complete description of the BOSS
structure, or even the Burrows-Wheeler transform, would be beyond the tech-
nical level of this document, and can be found in [1]. Intuitively, the Burrows-
Wheeler transform [7] is a permutation of the characters of a string that facil-
itates substring search and compression. BOSS extends this concept by storing
a permutation of the last characters of each k-mer6 together with a bit array.
The result is a data structure that supports efficient membership queries and
neighborhood traversal of the graph, all in around 6 bits per k-mer in practice.
While in the first few years the construction of this structure was relatively im-
practical, recent improvements lifted those limitations, allowing to process even
terabases of input data [22].

Taking a step back, BOSS is an exact representation that appears to somehow
beat the Conway-Bromage lower bound. How is this even possible? While this
aspect was not discussed in nearly all of the publications related to BOSS, it
turns out that BOSS has been mainly applied to k-mer sets that have a so-
called spectrum-like property [10], i.e. where all the k-mers originate from some
underlying long strings. Should BOSS be applied to an arbitrary set of k-mers,
its space usage would mechanically be raised to match or exceed the Conway-
Bromage lower bound; yet, this fact has to my knowledge never been properly
tested in practice.

Regardless, the spectrum-like property and the effectiveness of BOSS are
important insights: a data structure may do better than the worst-case lower
bound while still remaining exact, when it is restricted to a certain class of
inputs that matter in practice. Then, a natural next question arises: what would
be a more realistic lower bound for representing ’practical’ de Bruijn graphs, i.e.
those having spectrum-like property?

Several collaborators and I addressed this question in [11], where we formu-
lated several concepts. First, we defined a navigational data structure as one
that enables navigation in the graph but does not necessarily support member-
ship queries. We showed that navigational data structures for general de Bruijn
6 along with some additional artificial k-mers to “pad” those which do not have a large
enough neighborhood.
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graphs require at least 3.24 bits per k-mer in the worst case. When restricted to
the family of linear de Bruijn graphs (i.e. graphs where all nodes have a single in-
neighbor and/or single out-neighbor), then a lower bound for navigational data
structures is 2 bits per k-mer. This last lower bound is tight, as representing the
linear de Bruijn graph using the Burrows-Wheeler transform (or its optimized
flavor, FM-index [17]) yields also a data structure that is asymptotically close
to 2 bits per k-mer. In [11], we also proposed a new data structure for de Bruijn
graphs having the spectrum-like property, using the Burrows-Wheeler transform,
and showed that it takes 2 + (k + 2)c/n bits per k-mer, where c is essentially the
maximal number of k-mer-disjoint strings the k-mers could have been generated
from7.

Lastly, one may also wonder how a de Bruijn graph could be further com-
pressed, e.g. to be stored on disk. Supposedly such a compressed representation
would be even smaller than the previously mentioned data structures. The trade-
off is the inability to perform fast queries. Two independent works [6, 38], one on
simplitigs and the other on spectrum-preserving string sets which I was associ-
ated with, proposed to store non-overlapping paths of the compacted de Bruijn
graph (defined later) as sequences, and store them in compressed form on disk.
Despite the representation apparently storing an incorrect representation of the
graph, due to paths being constructed by choosing edges arbitrarily, one may
observe that the original graph can be reconstructed losslessly from its path
representation. Such a disk representation achieved a space very close to the 2
bits per k-mer lower bound: 4.1 bits per k-mer for a whole human genome read
dataset, and 2.7 bits per k-mer for a human metagenome.

8 Construction algorithms

An apparté will be made in this section, where we will briefly mention the data
structure construction algorithms. One typical pre-processing step commonly
done prior to creating a de Bruijn graph data structure is k-mer counting. This
step takes the input sequencing data and yields the set of distinct k-mers present
in the input along with their abundances. It essentially constructs the nodes of
the de Bruijn graph.

During the development of Minia, we had ran into an issue. The graph repre-
sentation was so succinct that other steps of the genome assembly pipeline acted
as bottlenecks, including k-mer counting. At the time, the most efficient k-mer
counter was Jellyfish [28], which used a custom thread-safe hash table optimized
specifically to store k-mers. Yet, Jellyfish would have used much more memory
than Minia. We therefore set out to design a low-memory k-mer counting tool
that would use the disk to alleviate memory usage (DSK [39]). This strategy
was also used by other popular k-mer counting tools, e.g. KMC [15].

The problem of k-mer counting is fascinating in its simplicity but also difficult
to engineer correctly, given that large volumes of input sequences need to be
7 For specialists, c is the number of unitigs.
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processed with high CPU utilization, low memory usage, and bandwidth-limited
disk accesses. A relatively current review is [27]. After k-mer counting, nearly all
of the data structures presented above have their own, customized construction
algorithms. As such, there does not exist an ’universal’ construction algorithm
for de Bruijn graph that would then be slightly adapted to derive a particular
data structure.

However, several recent data structures (the one presented in [11], Puffer-
fish [2], BLight [30]) require as input a common object: the compacted de
Bruijn graph. It is obtained from a classical de Bruijn graph by transforming
each non-branching path into a single node, similarly to suffix tries are trans-
formed into suffix trees by collapsing paths of vertices having one child. However,
this is a circular situation: in order to construct an efficient representation of the
classical de Bruijn graph, one must have already constructed a compacted de
Bruijn graph, which itself is obtained from the classical de Bruijn graph. In or-
der to break this circularity, My colleagues and I proposed an efficient construc-
tion algorithm for the compacted de Bruijn graph [11], which uses a constant
amount of memory. It was further extended to make use of multiple threads
efficiently [12].

9 Current state of the art

Since the influx of de Bruijn graph data structures in 2012, several more have
been published in the recent years. As it turns out, many of them are based
on minimal perfect hashing. It is a variation of a hash table which does not
store its keys, yet still manages to resolves collisions. Minimal perfect hashing
is unable to confirm if an arbitrary key is present or absent in the structure,
however for any key that was inserted during its construction, it returns an exact
answer. This makes the structure highly space-efficient. Along with colleagues,
we proposed a fast parallel C++ library for constructing minimal perfect hashes
(BBHash [25]) which has been engineered to scale significantly better than other
existing implementations at the time.

Among current de Bruijn graph data structures, I will briefly highlight Puffer-
fish [2] and Blight [30] which are both based on the compacted de Bruijn graph,
and queries are supported by an additional minimal perfect hashing structure
that quickly locates positions within nodes of the compacted graph. The Bloom
Filter trie [19] and Bifrost [18] structures both use Bloom filters in addition with
other auxiliary data structures to keep the representation exact, yet even brush-
ing their algorithmic details would be too technical for this survey. Counting
quotient filters [34] improve upon Bloom filters by also storing the number of
occurrences of each node in the input data. Belazzougui et al. proposed a navi-
gational data structure based on minimal perfect hashing, with a clever addition
of a tree data structure to restore membership queries. For more details on all
of these data structures, see [10].

In a way, one might acknowledge that “the dust has settled” in the landscape
of de Bruijn graph data structures. The bioinformatics algorithms community
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has attempted for several years to come up with solutions that combine low
space usage, fast query speed and a reasonable set of features. The outcome is
a set of current data structures that achieve reasonable trade-offs, with space
close to the known lower bounds. As a result, de Bruijn graphs are no longer a
bottleneck in genome assembly, partly also due to decreasing RAM costs (Fig 4).
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Fig. 4. Consumer RAM costs from the 2007–2021 period. Each dot is a retail DIMM
product sold on the current year. Source: https://jcmit.net/memoryprice.htm

Then, is this the end of this line of research? Not quite, as the natural next
frontier is the representation of multiple genomes within a generalization of the
de Bruijn graph.

10 Colored de Bruijn graphs

As a coincidence of dates (or perhaps not), 2012 was not only the year where
many seminal data structures for de Bruijn graphs were proposed, but also the
year when the term colored de Bruijn graph was coined (in [21]), which will pave
the way to the next type of contributions that we will mention here. Colored de
Bruijn graphs generalize de Bruijn graphs to multiple samples. When faced with
multiple samples, a classical de Bruijn graph would bundle them together and
consider the union of all samples as a single “mega-sample”. Colored de Bruijn
graph also do that, but they add additional information associated to the nodes
so that one can tell the origin of each node across samples. Naturally, speaking in
terms of lower bounds, storing such a graph for multiple samples should require
strictly more space than storing the graph of any subset of samples.

Several data structures have been proposed to store colored de Bruijn graph,
the first of which was based on an efficient hash table [21], then later using the
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Burrows-Wheeler transform [33]. More recently my colleagues and I proposed
the REINDEER structure, based on compacted de Bruijn graphs and minimal
perfect hashing [29], with the distinctive feature of not only storing the pres-
ence/absence of nodes, but also the approximate frequency of each node within
each sample.

To the best of my knowledge, there has been no attempt made at formulating
space lower bounds for colored de Bruijn graphs. One may obtain one through an
immediate application of existing lower bounds to the union graph disregarding
color information. However, this would be a loose bound as much of the difficulty
of storing colored graphs lies in the color information.

11 Wrap-up and open questions

As we reviewed above, many data structures have been proposed to store de
Bruijn graphs, achieving several order of magnitudes improvement in space usage
compared to using off-the-shelf data structures for graph storage. From this
perspective, the theoretical study of data structures along with their practical
implementations has been successful at providing performance gains for widely-
used software tools (e.g. [3, 23]). Looking back, the improvements have mainly
be due to two realizations. 1) Data structure exactness can be sacrified yet
still provide exact results in a certain frame of operations. 2) The theoretical
worst-case analysis of data structures inadequately applies to practical instances.
The latter realization is the topic of an upcoming article from Medvedev [31],
critically reflecting on the analysis of bioinformatics algorithms more broadly.

Several topics were not covered in this document, to keep it simple. One
is double-strandedness, which forces all the data structures mentioned above to
consider that a k-mer and its reverse-complement should be the same object; this
adds theoretical and especially practical complications, yet does not fundamen-
tally change the exposition of the data structures. An additional one is the use
of multiple k values. Nowadays genome assembly tools on short reads typically
construct multiple de Bruijn graphs iteratively. This is a somewhat orthogonal
matter as presented here, given that each individual graph is represented using
one of the techniques above. We note however that some works have attempted
to unify multiple graphs into one [4, 8]. Another consideration is how to store
the number of times each k-mer is seen in the input. All these considerations are
discussed in more details in [10].

We summarize here a few open questions:

1. Can compressed representations e.g. spectrum-preserving string sets be made
efficiently queryable? This would lead to even more compressed de Bruijn
graphs.

2. What would be a space lower bound for exactly representing a colored de
Bruijn graph of n samples, each sample i having Di distinct k-mers?

3. A matching upper bound of the above.
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4. How to efficiently represent not only the presence/absence of a node but
also its abundance in colored de Bruijn graphs (improving upon REIN-
DEER [29]).
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