
Genome assembly with either
short reads or long reads

Rayan Chikhi

Institut Pasteur & CNRS

Helsinki Bioinformatics Day 2019

1



Bio

@RayanChikhi
http://rayan.chikhi.name

- Compsci/math background

- Algorithms and data structures for what comes out of
DNA sequencers

- Software:
▸ Minia, DSK, Bcalm2, KmerGenie, GATB

- Real assemblies:
▸ some bacterias, giraffe, gorilla Y, mountain goat, water

buffalo

2

http://rayan.chikhi.name


This talk

- state of short reads assemblers
- state of long reads assemblers
- helping long reads assemblers

3



Genome assembly

sequenced
reads: 
overlapping
sub-sequences,
covering
the genome 
redundantly
 

genome
(unknown)

assembly
hypothesis of 
the genome

 

read

contig

4



Why assemble

▸ Reconstruct a genome
▸ a transcriptome
▸ a pangenome
▸ novel insertions
▸ SNPs in non-model

organisms
Also used in:

▸ DNA variants detection
▸ Transcript quantification
▸ Alternative splicing detection

5



Happy b-day genome assembly

(Staden 1979) “With modern
fast sequencing techniques and
suitable computer programs it
is now possible to sequence
whole genomes without the
need of restriction maps.”

(Adapted from A. Phillippy’s talk, RECOMB-Seq’19)

6



Genome assembly software is complex

- Coding: PhD (3 years), or team of engineers (1-2 years)
- Several not-always-independant components
- Heuristics everywhere

A good genome assembler is like a good sausage,
you’d rather not know how it was made.

’ (S. Gnerre, ALLPATHS assembler)

7



Short-read assemblers

8



de Bruijn graphs
A de Bruijn graph for a fixed integer k :

1. Nodes = all k-mers in the reads
2. Edges = all exact overlaps of length exactly (k − 1)

between k -mers

Reads:
AGCCTGA

AGCATGA

dBG, k = 3:

AGC

GCC

GCA

CCT

CAT

CTG

TGA

ATG

TGA

9



Actual compacted de Bruijn graph

chr14:20Mbp-20.5Mbp GAGE PE reads, SPAdes 3.8 k=31, 1k nodes

10



Actual compacted de Bruijn graph

same as previous slide, detail

11



BCALM2 [ISMB’16]: construction of compacted
de Bruijn graphs

Parallel
glue
algorithm

Parallel
partial
compac-
tion
algorithm

Intermediate 
sequences

Input k-mers Unitigs

Algorithmic ingredients: minimizer partitioning, fast Malfoy-made compaction
algorithm, concurrent union-find, minimal perfect hashing

12



Short read assemblers
1) de Bruijn graph construction

2) Likely sequencing errors are removed.

3) Variations (e.g. SNPs, similar repetitions) are removed.
→ Collapses strains

4) Simple paths (i.e. contigs) are returned.

1 1 1 1
2

3

2

3

2

3

2

3

5) Extra steps: repeat-resolving, scaffolding

13



Short read assemblers

- have matured
- now tend to converge towards similar ideas
- mostly useful for metagenomics, transcriptomics
- also large genomes (ABySS2)

→ Careful recovery of low-abundance k-mers, graph
simplifications, multi-k, heuristic scaffolding

14



Exhibit 1: MEGAHIT < v1.0

15



Exhibit 2: (meta)SPAdes

Graph construction
& simplifications

Output contigs

Further repeat-resolution

16



Exhibit 3: the Minia pipeline

BESST 2

Bloocoo
error-correction

scaffolding

BCALM 2.1
unitigs assembly

.fa/.gfa

Minia 3
contigs assembly

.fa/.gfa

.fq.gz

multi-k
frame-
work

Reads .fq.gz

k-mer counting
.h5DSK 3

Contigs

Scaffolds

.fa

.fa

17



Assemblers are now mostly parameter-free

Used to need to choose and set a suitable k -mer size.
- VelvetOptimizer software
- KmerGenie software

.. but not anymore.

18



Effect of k -mer size

Salmonella genome, Velvet assembly, 100 bp Illumina reads.

k = 61
Fig: https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

19



Effect of k -mer size
Salmonella genome, Velvet assembly, 100 bp Illumina reads.

k = 81
Fig: https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

19



Effect of k -mer size
Salmonella genome, Velvet assembly, 100 bp Illumina reads.

k = 91
Fig: https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size

19



Multi-k

Assembler
k=21

Input reads

Assembler
k=55

Assembler
k=77

Final assembly

Introduced by [Peng et al, RECOMB 2010]

20



Visualization of multi-k graphs
Salmonella genome, SPAdes assembly, MiSeq reads.

k = 21
21



Visualization of multi-k graphs

Salmonella genome, SPAdes assembly, MiSeq reads.

k = 55

21



Visualization of multi-k graphs

Salmonella genome, SPAdes assembly, MiSeq reads.

k = 99
→ Still a single component, less repeat-induced complexity

21



Measuring the impact of multi-k

multi−k,
mercy,

paired−end

multi−k,
no−mercy,

paired−end

multi−k,
no−mercy,
single−end

k=21,
no−mercy,
single−end

0 100 200 300 400

Assembly size (Mbp)

1 10

Megahit
Minia

N50 (kbp)

CAMI, medium dataset, PE data only

22



What’s next for short reads assembly?

-

- Can k -mer counting be done faster? (than KMC3)
- Low-memory and even more scalable dBG compaction?

(Bruno/BCALM2 hybrid)
- Fast multi-k (Can we do better than recomputing the whole

assembly for each k?)
- Graph simplifications according to a Bayesian model or even

ML.

23



Third generation assemblers

24



“First generation” of the 3rd generation

- Canu (Best Overlap Graph)
- Falcon, miniasm, MARVEL (overlap graphs)
- ABruijn
- Hinge
- Flye (2 2-column pages of graph description)

25



Ra

26



Wtdbg2

(proposal to rename it to “Wutabaga 2”)

2) Alignments are found between read bins
that share k-mers, using Smith-Waterman

1) Reads are binned into 256bp bins

R1

R2

3) Bases are forgotten, a "fuzzy" de 
Bruijn graph is constructed over the bins

b1 b2 b3 b4

b5 b6 b7 b8

b6b7b8 b2b3b4

27



Shasta (UCSC, LC’19)

- for Oxford Nanopore reads (and maybe also PacBio)
- human genome (60x) in 6 wall-clock hours (64 cores, 2 TB)

Techniques:
- homopolymer compression
- reads summarized as a sequence of “marker” 10-mers

Assign IDs to only a few 10-mers: GCA=0, GAC=1, CGC=2.

read: CGACACGTATGCGCACGCTGCGCTCTGCAGC

markers: GAC GCA GCA

CGC CGC

``summarized'' read: 1 2 0 2 0

Source: https://chanzuckerberg.github.io/shasta/ComputationalMethods.html

28

https://chanzuckerberg.github.io/shasta/ComputationalMethods.html


Peregrine (J. Chin, SFAF’19)
- only for accurate long reads: length > 10kb, accuracy > 99%
- read overlaps found by chaining minimizers
- human genome (30x cov) in 20 CPU hours

https://speakerdeck.com/jchin/assembling-human-genome-in-100-minutes

29

https://speakerdeck.com/jchin/assembling-human-genome-in-100-minutes


One chromosome = one contig?

Assembly graph of the E. coli genome [Koren 2015]:

Slides adapted from P. Marijon, RECOMB-Seq’19

30



NCTC 3000 database

599 / 1136 (34 %) assemblies are not single-contig (Feb 2019)

31



Example (simulated)

- Dataset: T. roseus (bacteria), simulated PacBio 20x
- Assembly tools: Canu

Resulting assembly graph:

Can we recover missing edges between contigs?

32



Not even a repetition problem..

Dotplot of T. roseus genome against itself.

Genome has 460 kbp tandem repeat.
Repetition explains only 1 of the 2 contigs breaks.

33



Example (simulated)

Let’s have a look at the original overlap graph:
- nodes → reads
- edges → overlaps

Overlap graph (constructed by Minimap2), reads colored by Canu

contig.

34



KNOT: Pipeline

Assembly contigs Raw reads

Contig classification Raw string graph

Inter-contigs paths search

Augmented assembly graph

Analysis explain before

Input

Output

35



The Augmented Assembly Graph

undirected, weighted graph:
- nodes: contigs extremities
- edges:

▸ between extremities of a contig (weight = 0)
▸ paths found between contigs (weight = path length in bp)

tig1 tig8 tig4
491922 ovl

755235

36



KNOT finds hidden connections between
contigs

Across 38 datasets:

Mean number of

Canu contigs 4.32

Dead-ends in Canu contig graph 4.94

Dead-ends in AAG 2.70

37



- AAG’s are generally complete
- Hamilton walks can be enumerated
- Walk weight: sum of edges weights
- lowest-weight walk assumed to be the true genome

● Green walk weight: 18,769 bases
● Blue walk weight: 136,229 bases

38





- Bacterial genome assembly isn’t fully solved
- Augmented Assembly Graphs can help

https://gitlab.inria.fr/pmarijon/knot

@pierre_marijon

- Other analysis tool not based on graphs:
- https://github.com/johnomics/tapestry

40

https://gitlab.inria.fr/pmarijon/knot
@pierre_marijon
https://github.com/johnomics/tapestry


Questions that have been bugging me

-

- Can k -mer counting be done faster (than KMC3), keeping
reasonable memory usage?

- Low-memory and scalable dBG compaction? (Bruno/BCALM2
hybrid)

- Fast multi-k (Can we do better than recomputing the whole
assembly for each k?)

- High-performance & high-quality 3rd generation assembler
(“fasterFlye”, see recent benchmark from R. Wick)

- Can somehow the marker graph idea of Shasta be applied.. to
k -mers?

Acknowledgments: Pierre Marijon, Guillaume Rizk, Antoine Limasset, Paul
Medvedev, Claire Lemaitre, Pierre Peterlongo, Charles Deltel, Camille
Marchet, Ryan Wick, Sergey Nurk, Kristoffer Sahlin, Lars Arvestad, Aaron
Darling, Chris Quince, Dominique Lavenier

41



42


	KNOT: Knowledge Network Overlap exTraction

