Question: is *de novo* genome assembly a solved problem with long reads, yet?

Rayan Chikhi

Institut Pasteur & CNRS

CGSI 2019

Answer: No

Answer: No

Thank you! Any questions?

Acknowledgements: Pierre Marijon, Jean-Stéphane Varré, Antoine Limasset, Camille Marchet, Sergey Nurk, Marco Previtali, Paul Medvedev, Shaun Jackman, Guillaume Rizk, Adam Phillippy

Hello

- New group leader at Institut Pasteur, Paris
- Algorithms and data structures for biological sequences

Contributions:

- Methods around k-mers
 - Minia, KmerGenie, DSK, BCALM2
- Genome assemblies

@RayanChikhi on Twitter
http://rayan.chikhi.name

Genome assembly

The many applications of assembly

- transcriptome
- metagenome
- genes from different taxa
- Find novel insertions
- SNPs in non-model organisms
- cell-free DNA SVs
- Pangenomics
 - . . .

Happy b-day whole-genome assembly

(Staden 1979) *"With modern fast sequencing techniques and suitable computer programs it is now possible to sequence whole genomes with-out the need of restriction maps."*

(Adapted from A. Phillippy's talk, RECOMB-Seq'19)

A short algorithmic history of genome assembly

A short algorithmic history of genome assembly

- Shortest Common Superstring
- Greedy algorithms

A short algorithmic history of genome assembly

- Shortest Common Superstring
- Greedy algorithms
- String graphs and de Bruijn graphs, both introduced at DIMACS in 1994

A History of DNA Sequence Assembly, G. Myers, 2016

Modern genome assembly: graphs

- 1. Construct a graph
- 2. Nodes are reads (or k-mers)
- 3. Edges are overlaps

Theorists will say ..

[Nagarajan 09]

4. Return a path of *minimal length* that traverses **each node at least once**.

Genome assembly is **NP-hard**.

[Medvedev, Brudno 2007]

If all **repeats** are **longer** than reads, Genome assembly is **polynomial**. (!)

[Nagarajan, Pop 2009]

If all repeats are either **shorter** than reads, or are **spanned** by reads, Genome assembly is **polynomial**, *and* with a **unique** solution.

[Nagarajan, Pop 2009] [Bresler, Bresler, Tse 2013]

But, in practice

- Illumina data: none of the previous formalisms applied
- Because graph often disconnected
- Contigs = unambiguous paths in graph

- Long reads: bridge between theory and practice appears possible
- HINGE assembler

[Kamath *et al*, 2017]

Recommended reading

Modeling biological problems in computer science: a case study in genome assembly @

Paul Medvedev 🐱

Briefings in Bioinformatics, bby003, https://doi.org/10.1093/bib/bby003 Published: 30 January 2018 Article history ▼

Vertebrate/human genome assembly

Outlook:

- Vertebrates: some have high repeat %
- Diploidicity: still badly handled
- Humans: Telomere2telomere within 2 years

Today: supposedly easy cases

- Small (e.g. bacterial) genomes
- Haploid
- Can we at least assemble that well now?

Genome assembly software is complex

- Coding:
 - PhD
 - or a team of engineers (1-2 years)
- Several not-always-independant components

- Heuristics everywhere

A good genome assembler is like a good sausage, you would rather not know what is inside

(apocryphal) S. Gnerre, ALLPATHS assembler

Long-read genome assemblers

- HGAP
- Canu
- Falcon
- miniasm
- Unicycler
- MARVEL
- Tulip
- ABruijn
- Hinge
- Flye
- Ra

...

- Wutabaga2
- Shasta
- Peregrine

One chromosome = one contig?

Assembly graph of the E. coli genome [Koren, Phillippy 2015]:

Slides adapted from P. Marijon, RECOMB-Seq'19

NCTC 3000 database

Species	Strain	Sample	Runs	Automated Assembly	Manual Assembly	Manual Assembly Chromosome Contig Number	Manual Assembly Plasmid Contig Number	Manual Assembly Unidentified Contig Number
Achromobacter xylosoxidans	NCTC10807	ERS451415 🗹	ERR550491 🖸 ERR550506 🗹 ERR550507 🗹	Pending	EMBL 🖯	1	0	0
Budvicia aquatica	NCTC12282 C	ERS462988	ERR581162 C	Pending	EMBL 🖯	2	0	0
Campylobacter jejuni	NCTC11351	ERS445056 C	ERR550473 C ERR550476 C	Pending	EMBL 🛙	1	0	0
Cedecea neteri	NCTC12120	ERS462978 🗹	ERR581152 <u>ERR581168</u> <u>ERR597265</u> C	Pending	EMBL 8	7	1	0
Citrobacter amalonaticus	NCTC10805	ERS485850 C	ERR601566 C ERR601575 C	Pending	EMBL 🖯	1	2	0
Citrobacter freundii	NCTC9750 C	ERS485849 C	ERR601559 C ERR601565 C	Pending	EMBL 🖯	1	0	0
Citrobacter koseri	NCTC10849 C	ERS473430 🗠	ERR581173 C	Pending	EMBL 🛙	1	1	0
Corynebacterium diphtheriae	NCTC11397 C	ERS451417 C	ERR550510 C	Pending	EMBL 🖯	1	0	0
Cronobacter sakazakii	NCTC11467	ERS462977 C	ERR581151 🖸 ERR581167 🖸	Pending	EMBL 🖯	4	3	0

599 / 1136 (34 %) assemblies are not single-contig (Feb 2019)

Example (simulated)

- Dataset: T. roseus (bacteria), simulated PacBio 20x
- Assembly: Canu 1.7

Resulting assembly graph:

Can we recover missing edges between contigs?

Not even a repetition problem..

Dotplot of T. roseus genome against itself.

Genome has a 460 kbp tandem repeat. It explains only 1 of the 2 contigs breaks.

Example (simulated)

Let's have a look at the original overlap graph:

- nodes → reads
- edges → overlaps

Overlap graph (constructed by Minimap 2), reads colored by Canu contig.

KNOT: Pipeline

P. Marijon et al, Bioinformatics 2019

The Augmented Assembly Graph

undirected, weighted graph:

- nodes: contigs extremities
- edges:
 - between extremities of a contig (weight = 0)
 - paths found between contigs (weight = path length in bp)

KNOT finds hidden connections between contigs

Across 38 datasets:

Mean number of

Canu contigs	4.32
Dead-ends in Canu contig graph	4.94
Dead-ends in AAG	2.70

- AAG's are generally complete
- Hamilton walks can be enumerated
- Walk weight: sum of edges weights
- lowest-weight walk assumed to be the true genome

- Green walk weight: 18,769 bases
- Blue walk weight: 136,229 bases

- Bacterial genome assembly isn't fully solved
- Augmented Assembly Graphs can help

- Other analysis tool not based on graphs:
- https://github.com/johnomics/tapestry

-				5						
-	1	9		5						
	-	9								
Har	alboxian dividue h	pot	b							
								1211		
	in of an ight	1	110		1000		1100			
		-		~						
	ven tudse		tion		~	-			1 1	1/12
			ikan 			-			1- 	17.07
			-			-			1/ (1990.)	
			-							
			A A A A A A A A A A A A A A A A A A A			ſ	8 8 9 8 8 8			
			-				3 3 3 3 9 3 9			12 56 m 12 m 12 m 12 m
			A T T T T T T T T				3 3 3 3 5 3 0 3 0			
							3 3 3 3 3 5 5 6 9 9 9			

How robust are genome assemblers?

https://github.com/rrwick/Badread

Simulates reads with

- chimeras
- low-quality regions
- systematic basecalling errors

Software testing

Unit test for a single function

```
def AddTest:
    assert(add(1,1) == 2)
```

Functional test for a whole feature

```
def MapTest:
    r = mapRead("ACTGATG", genome)
    assert(r.position = 100000)
    assert(r.mapping_length = 150)
    ...
```

Assembly "functional testing"

github.com/rrwick/Long-read-assembler-comparison/

- Bacterial genome (C. kerstersii)
 - 4 tandem copies of rRNA operon, 20kbp repeat
- Simulated PacBio reads, various
 - Read lengths
 - Error rates
 - Coverages
 - ▶ ...

Badread

R. Wick, K. Holt

Badread

Badread

R. Wick, K. Holt

Reproducing that benchmark

- Same dataset as the previous benchmark
- Simulated reads using another program (PaSS, 2019)
- 50x depth
- Should assemble fine into 1 contig (...maybe?)

Leveninger henden gester die Erfsteten mehringen siefen	estance adultation denormalies and an and a denormalies and a destance and a destance and a destance and a desta
1 to 3.565,206 (3.6 Mbp)	1 to 40 (40 bp)

Same assemblers

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs					

Reproducing that benchmark

- Same dataset as the previous benchmark
- Simulated reads using another program (PaSS, 2019)
- 50x depth
- Should assemble fine into 1 contig (...maybe?)

. An environment of the second	estance adultation denormalies and an and a denormalies and a destance and a destance and a destance and a desta
1 to 3.565,206 (3.6 Mbp)	1 to 40 (40 bp)

- Same assemblers

		Canu	Flye	Ra	Unicycler	Wtdbg2
# (contigs	1 🙂	1 🙂	2 🙂	3 🙂	2 😲

Is it a coverage problem?

Is it a coverage problem?

- from 50x coverage

Anna an	estances and the other free way walk a flore and a dark a first of the dark of the state of the second
1 to 3.565.206 (3.6 Mbp)	1 to 40 (40 bp)

- to 100x coverage

	nette in antigerin de la constant d
1 to 3.565.206 (3.6 Mbp)	۶ 1 to 43 (43 bp)

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs					

Is it a coverage problem?

- from 50x coverage

Anna an	estances and the other free way walk a flore and a dark a first of the dark of the state of the second
1 to 3.565.206 (3.6 Mbp)	1 to 40 (40 bp)

- to 100x coverage

	nette in antigerin de la constant d
1 to 3.565.206 (3.6 Mbp)	۶ 1 to 43 (43 bp)

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs	1 🙂	1 🙂	2 🙂	3 🙂	3 🙂

- So, no

Robustness to coverage drops

- Taking the 50x coverage dataset again
- Simulating a coverage drop to **10x** somewhere

Before:

(4.4.31416 64.313 (20 b)	414 314 to 414, 459 (146 bp)
After:	
4.4.3.4.6.4.3.12 (29.6)	4]4,3]4 to 414,459 []46 bp]

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs					

Robustness to coverage drops

- Taking the 50x coverage dataset again
- Simulating a coverage drop to **10x** somewhere

Before:

(1 4.11.4 to 434.113 (2016)	414,314 to 414,459 (146 bp)
After:	
	4) 4,314 to 414,459 (146 bp)

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs	1 🙂	1 🙂	2 🙂	3 🙂	2 🙂

Assemblers: all unphased by that drop

Robustness to heavy coverage drop

10x:

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs					

Robustness to heavy coverage drop

10x:

	Canu	Flye	Ra	Unicycler	Wtdbg2
# contigs	2 🙂	1 🙂	3 🙂	3 🙂	2 🙂

- Good job Flye!

Conclusion

- Assembly status: unsolved
- Benchmarks: needed
- Tools presented here: KNOT, Badread

Thank you! Any questions? (for real now)

Acknowledgements: Pierre Marijon, Jean-Stéphane Varré, Antoine Limasset, Camille Marchet, Brian Bushnell, Sergey Nurk, Marco Previtali, Paul Medvedev, Shaun Jackman, Guillaume Rizk, Ryan Wick, Tablet software, Adam Phillippy