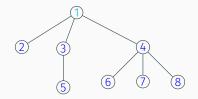
Dualities in Tree Representations

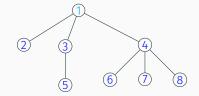
Rayan Chikhi & Alexander Schönhuth

CNRS, University of Lille, France CWI, Netherlands

Consider an ordinal tree...

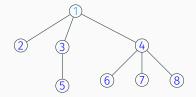


Consider an ordinal tree...



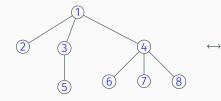
BP representation: (()(())(()()())) 12 35 46 7 8 Balanced Parenthesis: in DFS order, init: (going down: (going up:) end:)

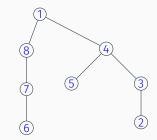
Consider an ordinal tree...



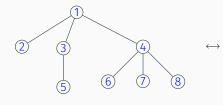
DFUDS representation: (((())())((())) 1 23 54 678 (Benoit *et al*, 2005) <u>Depth-First Unary Degree Sequence</u>: in DFS order, init: (record # of children as ('s then)

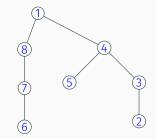
$Transformation: [rightmost child] \leftrightarrow [left sibling]_{\tiny (except for the root)}$





$Transformation: [rightmost child] \leftrightarrow [left sibling]_{\tiny (except for the root)}$





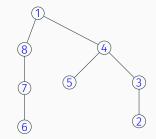
BP of original tree: (()(())(()()))

DFUDS of dual tree:
((()()())())())

DFUDS of dual tree, mirrored: (()(())(()()()))

$Transformation: [rightmost child] \leftrightarrow [left sibling]_{\tiny (except for the root)}$



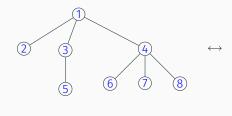


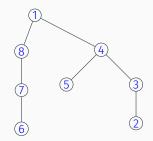
BP of original tree: (()(())(()()))

DFUDS of dual tree:
((()()())())())

DFUDS of dual tree, mirrored: (()(())(()()()))

Dual trees

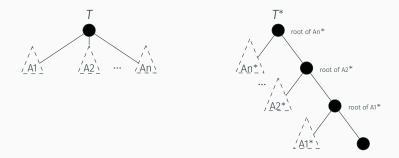




- T* defined from a tree *T* as:
 - Rule 1: root stays the same
 - Rule 1b: rightmost child of root stays the same
 - Rule 2: rightmost child in *T* becomes left sibling in *T**
 - Rule 3: left sibling in *T* becomes rightmost child in *T**

Property: $(T^*)^* = T$

$BP(T^*) = \overleftarrow{DFUDS(T)}, proof sketch$



Modulo special handling of subtree roots and their respective rightmost children,

$$DFUDS(T^*) = (DFUDS(An^*) \dots DFUDS(A2^*) DFUDS(A1^*))$$
$$= (\overrightarrow{BP(An)} \dots \overrightarrow{BP(A2)} \overrightarrow{BP(A1)}), by induction$$
$$= \overrightarrow{BP(T)}$$

[Farzan *et al*'09]: data structure that emulates BP & DFUDS [Davoodi *et al*'17]: observed the relation through binary trees, our statement is more direct

Range Minimum Query:

 $\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$

Range Minimum Query:

 $\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$

[Fischer & Heun, SICOMP, 2011]

- First structure using 2n + o(n) bits, answers queries in O(1) time
- Query runs on DFUDS(*T*[A]), where *T*[A] is "2D-Min-Heap" of A

Range Minimum Query:

 $\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$

[Fischer & Heun, SICOMP, 2011]

- First structure using 2n + o(n) bits, answers queries in O(1) time
- Query runs on DFUDS(*T*[A]), where *T*[A] is "2D-Min-Heap" of A

[Ferrada & Navarro, JoDA, 2017]

- Construct a different tree $\widehat{T}[A]$
- Improvement: query on $\mathrm{BP}(\widehat{T}[A])$ is shorter

Range Minimum Query:

 $\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$

[Fischer & Heun, SICOMP, 2011]

- First structure using 2n + o(n) bits, answers queries in O(1) time
- Query runs on DFUDS(T[A]), where T[A] is "2D-Min-Heap" of A

[Ferrada & Navarro, JoDA, 2017]

- Construct a different tree $\widehat{T}[A]$
- Improvement: query on $\mathrm{BP}(\widehat{T}[A])$ is shorter

However:

 $\cdot \text{ DFUDS}(T[A]) = BP(\widehat{T}[A])$

Range Minimum Query:

 $\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$

[Fischer & Heun, SICOMP, 2011]

- First structure using 2n + o(n) bits, answers queries in O(1) time
- Query runs on DFUDS(T[A]), where T[A] is "2D-Min-Heap" of A

[Ferrada & Navarro, JoDA, 2017]

- Construct a different tree $\widehat{T}[A]$
- Improvement: query on $BP(\widehat{T}[A])$ is shorter

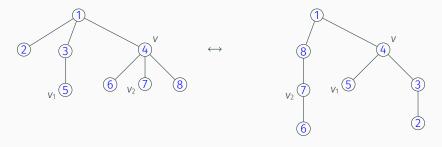
However:

- · DFUDS(T[A]) = BP($\hat{T}[A]$)
- What are the underlying principles?

The Primal-Dual Ancestor

Primal-dual ancestor:

Let
$$v_1 \leq v_2$$
 in T , $\mathbf{pda}(v_1, v_2) = \mathbf{v}$, s.t. $\begin{cases} v_1 \in T^*[v] \\ v_2 \in T[v] \end{cases}$



- always exists, is unique
- the rightmost (in depth-first traversal order) node between v_1 and v_2 that minimizes the depth.

Range Minimum Query:

$$\operatorname{rmq}_{A}(i,j) := \min\{A[k] \mid i \leq k \leq j\}.$$

[Fischer & Heun, SICOMP, 2011]

• Query on DFUDS(T[A]), where T[A] is "2D-Min-Heap" of A

Re-interpretation using dual trees

 $\operatorname{rmq}_{A}(i,j) = \operatorname{pda}(i,j) \operatorname{in} T[A]$

Motivation: Minimal Length Interval Queries

Let $([a_i, b_i])_{i \in \{1,...,n\}}$, $a_i, b_i \in \mathbb{N}$ such that $a_i \leq b_i$ for all $i \in \{1, ..., n\}$ and $a_i < a_j$ and $b_i < b_j$ for i < j.

- **Input**: (*a*, *b*) such that *a* < *b*
- **Output**: The index i_0 such that $[a_{i_0}, b_{i_0}]$ is the shortest interval that contains [a, b], if such an interval exists.

Motivation: Minimal Length Interval Queries

Let $([a_i, b_i])_{i \in \{1,...,n\}}$, $a_i, b_i \in \mathbb{N}$ such that $a_i \leq b_i$ for all $i \in \{1, ..., n\}$ and $a_i < a_j$ and $b_i < b_j$ for i < j.

- **Input**: (*a*, *b*) such that *a* < *b*
- **Output**: The index i_0 such that $[a_{i_0}, b_{i_0}]$ is the shortest interval that contains [a, b], if such an interval exists.
- A solution was presented in [Hu et al., SPIRE 2014] that needs $O(b_n \log b_n)$ space to answer queries in O(1) time.
- Can be immediately improved to $O(n \log(b_n/n)) + o(b_n)$

Motivation: Minimal Length Interval Queries

Let $([a_i, b_i])_{i \in \{1,...,n\}}, a_i, b_i \in \mathbb{N}$ such that $a_i \leq b_i$ for all $i \in \{1, ..., n\}$ and $a_i < a_j$ and $b_i < b_j$ for i < j.

- **Input**: (*a*, *b*) such that *a* < *b*
- **Output**: The index i_0 such that $[a_{i_0}, b_{i_0}]$ is the shortest interval that contains [a, b], if such an interval exists.

Further improvement

- If $|a_i a_{i-1}|$, $|b_i b_{i-1}|$ are in $O(\log n)$, further improvements possible.
- Using primal-dual ancestor logic, in combination with techniques presented in [Tsur, arXiv:1312.6039, 2015] (on succinct representatons of weighted trees), we can determine the minimum length interval using
 - $\cdot\,$ two bpselect queries instead of two rank and two select queries
 - $2n \log \log n + o(n)$ space, an improvement over $O(n \log(b_n/n)) + o(b_n)$

Re-interpretation of Range Minimal Queries Improvement of Minimal Length Interval Queries

$$\forall T, \exists T^*, BP(T^*) = \overleftarrow{DFUDS(T)}$$

Open question: include LOUDS representation

Paper @ LIPIcs & arXiv (full version): Dualities in tree representations

Questions?