
Graphs for reference-free
analysis of sequencing data

Rayan Chikhi

CNRS
Bonsai team, CRIStAL/INRIA, Univ. Lille 1

Colib’read workshop, November 2016, Paris

1

Motivation

Reference-free sequencing data analysis:
no genome sequence, or choosing not to use it

Some applications:
1. Read error correction
2. DNA/RNA/metaDNA assembly
3. Alternative splicing detection
4. DNA variants detection
5. Transcript quantification

Presentation will be application-agnostic. We’ll talk about the
overlap graph, string graph, de Bruijn graph, A-Bruijn graph,
superstring graph

2

This talk

.. will be technical!

Computer Scientists: sit back and relax, it gets challenging in
the second part

(as Pierre would say,) Biologists:
the first part will possibly be helpful to understand other talks

3

Vocabulary

A graph is:
- a set of nodes, and
- a set of edges (directed or not)

a0

a1
a2

a3

a4

a5
a6

a7

k -mers are strings of length k

4

Graphs for sequencing data

Graphs represent overlaps between sequences in reads.

Two widely used families of graphs for sequencing data:
- de Bruijn graphs generally for Illumina data

- string graphs generally for Sanger/PacBio/Nanopore data

5

Overlap graphs

First, agree on some definition of "what is an overlap".

1. Nodes = reads.
2. Edges = overlap between two reads.

In this example, let’s say that an overlap needs to be:
- exact
- and over at least 3 characters.

ACTGCT
CTGCT (overlap of length 5)

GCTAA (overlap of length 3)

ACTGCT CTGCT GCTAA

6

String graphs

A string graph is obtained from an overlap graph by removing
redundancy:

- redundant reads (those fully contained in another read)
- transitively redundant edges (if a→ c and a→ b → c, then

remove a→ c)

Example:
ACTGCT
CTGCT (overlap length 5)

GCTAA (overlap length 3)

ACTGCT GCTAA

Let’s have inexact overlaps here
ACTGCT
CTACT

GCTAA

ACTGCT CTACT GCTAA

7

String graph / de Bruijn graph (4)

So, which is better?

- String graphs capture whole read information
- de Bruijn graphs are conceptually simpler:

I single node length
I single overlap definition

string graphs have been mostly used for long reads and
de Bruijn graphs mostly for short reads.

String graphs are also known as the Overlap Layout
Consensus (OLC) method.

8

de Bruijn graphs

A de Bruijn graph for a fixed integer k :
1. Nodes = all k-mers (substrings of length k) in the reads.
2. There is an edge between x and y if the (k − 1)-mer prefix

of y matches exactly the (k − 1)-mer suffix of x .

Example for k = 3 and a single read:

ACTG

ACT CTG

9

de Bruijn graphs

Example for many reads and still k = 3.

ACTG
CTGC
TGCC

ACT CTG TGC GCC

10

de Bruijn graphs: redundancy

What happens if we add redundancy?

ACTG
ACTG
CTGC
CTGC
CTGC
TGCC
TGCC

dBG, k = 3:

ACT CTG TGC GCC

11

de Bruijn graphs: errors

How is a sequencing error (at the end of a read) impacting the
de Bruijn graph?

ACTG
CTGC
CTGA
TGCC

dBG, k = 3:

ACT CTG TGC

TGA

GCC

12

de Bruijn graphs: SNPs

What is the effect of a SNP (or a sequencing error inside a
read) on the graph?

AGCCTGA
AGCATGA

dBG, k = 3:

AGC

GCC

GCA

CCT

CAT

CTG

TGA

ATG

TGA

13

de Bruijn graphs: repeats

What is the effect of a small repeat on the graph?

ACTG
CTGC
TGCT
GCTG
CTGA
TGAT

dBG, k = 3:

ACT CTG TGC

GCTTGAGAT

14

Comparison string graph / de Bruijn graph

On the same example, compare the de Bruijn graph with the
string graph:

AGTGCT
GTGCTA

GCTAA

String graph, overlap threshold of 3:

AGTGCT GTGCTA GCTAA

de Bruijn graph, k = 3:

AGT GTG TGC GCT CTA TAA

15

Short note on reverse complements

Because sequencing is generally not strand-specific:

We always consider that reads (and k-mers) are equal
to their reverse complements.

E.g:
AAA = TTT
ATG = CAT

16

Short note on dBG definitions

Node-centric dBG:

what we saw.
nodes = k -mers
edges = (k − 1)-overlaps

Edge-centric dBG:

nodes = k -mers
edges = (k + 1)-mers

Also called dBG− and dBG+ in the south of France.

They’re related but not strictly equivalent.

17

Space needed to represent the dBG

With a hash table: ≥ 2k bits / node

bits/node

0 4 8 16 22

Conway-Bromage l.b. (k=27)

khmer (lossy)

Minia (k=27)

SDBG

Memory-efficient dBG data structures:
khmer Bloom filter [Pell et al. 11]
Minia BF \ false positives [Chikhi, Rizk 12], [Salikhov et al. 13]

SDBG XBW + rank/select [Bowe et al. 12]
Why are they so efficient? → not all operations are supported

18

Navigational data structures

NDS
Membership

(e.g. hash table)

Traverse dBG from known nodes X X

Query membership of arbitrary nodes x X

Enumerate nodes x X

NDS has undefined behavior if query node not present.

Minia and SDBG are NDS but not Memb-DS

19

Software

To just construct the graph:

String graph
Illumina: SGA1 or SlideSort2

PacBio: Minimap + Miniasm3

de Bruijn graph
GATB-Core4 (for developers, navigational index),
BCALM 25 (stand-alone, graph on disk),
ABySS6

BCALM 2: 3 GB RAM / 2 wall-clock hours for mammalian
genome, outputs unitigs.

1github.com/jts/sga
2github.com/iskana/SlideSort
3github.com/lh3/miniasm
4github.com/GATB/gatb-core
5github.com/GATB/bcalm
6github.com/bcgsc/abyss

20

Focus on the Bloom Filter dBG representation
(prelude to GATB)

Adapted from slides by G. Collet

21

Focus on the Bloom Filter dBG representation
(prelude to GATB)

Adapted from slides by G. Collet

21

Focus on the Bloom Filter dBG representation
(prelude to GATB)

Adapted from slides by G. Collet

21

Compacted de Bruijn graph

Compacted de Bruijn graph:

TCATTG
TGGTAA

TGCGAA
AACCG

Each non-branching path becomes a single node (unitig).

- no loss of information
- less space

Can be constructed using BCALM.
Some assemblers use it as intermediate representation.

22

A-Bruijn graphs
Introduced by [Pevzner 2004]. Generalize de Bruijn graphs.
Recently used in ABruijn assembler (PacBio) [Lin 2016].

Principle: nodes = an arbitrary set of words V.
To construct edges, given a set of strings (the reads):

- For each string r , find substrings that are elements of V .
- Add v1 → v2 when v1 is just before v2 in r .
- Label edge with (pos(v2, r)− pos(v1, r)).

Observe that dBG(Reads) = ABruijn(V = Σk ,E = Reads)

Ex: ABruijn(V = {ab,dca,bcd},abcdcab):

ab

bcd

dca

1 2

2

23

de Bruijn vs A-Bruijn

String=CATCAGATAGGA.
For dBG: k = 2,
edge-centric.

For A-Bruijn, V = {CA,
AT, TC, AGA, TA, AGG,
AC} (V is arbitrary here)

24

A-Bruijn usages

- Original paper Sanger, handling repeats in EULER
[Pevzner 2004]

- SPAdes (early vers) Illumina DNA/metaDNA assembler
[Bankevich,. . . ,Pevzner 2012]

- ABruijn Pacbio assembler
[Lin,. . . ,Pevzner 2016]

25

Superstring graph
[Cazaux, Sacomoto, Rivals 2016]

Consider a set of reads P (none is contained in another).
Consider all maximal overlaps between these reads, Ov(P).

Given a set of strings F (also none contained), remove all
overlaps that are substrings of F . Call this set Ov∗(P,F).

E.g.

P = {abcc, ccd , cde},

Ov(P) = {cc, cd , c}.

Now if F = {cdef},

Ov∗(P,F) = {cc}.
26

Superstring graph (2)
Recall, Ov∗(P,F) are maximal overlaps between words in P,
except substrings in F . Typically F = Σkmin−1.

The Truncated Hierarchical Overlap Graph, THOG(P,F) is a
graph, where:

- nodes = P and Ov∗(P,F)
- edges = whenever a node is the longest suffix or the

longest prefix of another node

E.g. THOG({aacbb,bbdaa,aeb,bfa}, ∅)

27

Superstring graph (3)
The superstring graph is defined as a subgraph of THOG.

It consists of a set of paths in THOG that correspond to a greedy solution of a
computational problem (Constrained Shortest Cyclic Cover of Strings).

Applications:
- superstring problems (CompSci)
- multi-k assembly

28

How an assembler works
[SPAdes, Velvet, ABySS, SOAPdenovo, SGA, Megahit, Minia, .., HGAP, FALCON]

1) Maybe correct the reads. (SPAdes, HGAP, SGA, FALCON)
2) Construct a graph from the reads.

Assembly graph with variants & errors

3) Likely sequencing errors are removed. (not in FALCON)

3) Known biological events are removed. (not in FALCON)

4) Finally, simple paths (i.e. contigs) are returned.

1 1 1 1
2

3

2

3

2

3

2

3

29

The choice of k

Choice of k is critical in dBG applications:

- k -mers with sequencing errors are noise
- only non-erroneous k -mers matter
- k < log4(|genome|): nearly complete graph, uninformative
- small k : collapses repeats, more non-erroneous k -mers
- large k : less repeat collapsing, less non-erroneous k -mers

(due to error and shortness of reads)

Generally, k ≥ 20.
(Compare 4k to the genome size.)
Higher sequencing coverage means larger k values can be
used.

30

Graph formats

- FASTG
- GFA
- GFA2

H VN:Z:1.0
S 11 ACCTT
S 12 TCAAGG
S 13 CTTGATT
L 11 + 12 - 4M
L 12 - 13 + 5M
L 11 + 13 + 3M
P 14 11+,12-,13+ 4M,5M

ACCTT

TCAAGG

CTTGATT

+- -+

++

31

Conclusion

We saw many graphs

- Overlap graph
- String graph
- De Bruijn graph
- A-Bruijn graph
- Superstring graph

Those slides will be available at http://rayan.chikhi.name

Enjoy the workshop!

32

http://rayan.chikhi.name

