Space-efficient and exact de Bruijn graph representation
based on a Bloom filter

Rayan Chikhi, Guillaume Rizk

ENS Cachan Brittany / IRISA, France
AlgoRizk, France

WABI 2012

~

ueh

Vs

&:1RISA BRETAGNE

1/21

TRANSITION FROM THE PREVIOUS TALK

The previous talk dealed with a succinct de Bruijn graph representation.

This talk covers exactly the same topic, with some differences :
> (Hopefully) simpler data structure
» Less succinct

» Implemented in an assembly program

2/21

OUTLINE

Presentation of the data structure

Analysis

Assembly aspects

Results

Perspectives

3/21

Presentation of the data structure

4/21

de Bruijn graph [Idury, Waterman 95]

Nodes are k-mers, edges are (k — 1)-overlaps between nodes.

GAT ==3» ATT ==3» TTA ==3» TAC == ACA =3 CAA

Only nodes need to be encoded, as edges are inferred.

How to encode the de Bruijn graph using as little space as possible ?

Memory usage (illustration for k = 25)
» Explicit list : 2k - n bits 50 bits per node
» Self-information of n nodes : [Conway, Bromage 11]

()

20 bits per node.

4/21

Bloom filter

Bit array to represent any set with a “precision” of e.

> a proportion € of elements will be wrongly included (false positives).

To represent a set of n elements, requires ~ 1.441log, (1) - n bits.

Storing k-mers in a Bloom filter :

Bloom filter

k-mer | hash value

ATC 0 0

CCG 0 8

TCC 5 N

CGC 6 1
0
0
0

5/21

Bloom filter
Bit array to represent any set with a “precision” of e.
> a proportion € of elements will be wrongly included (false positives).

To represent a set of n elements, requires ~ 1.441log, (1) - n bits.

Storing k-mers in a Bloom filter :

Bloom filter

1

k-mer | hash value / 0
ATC 0 0
CCG 0 8
TCC 5 N
CGC 6 1
0

0

/0

Queries :
Is the k-mer ATA (hash value 9 ypresent ? No.

5/21

Bloom filter
Bit array to represent any set with a “precision” of e.
> a proportion € of elements will be wrongly included (false positives).

To represent a set of n elements, requires ~ 1.441log, (1) - n bits.

Storing k-mers in a Bloom filter :

Bloom filter

1
k-mer | hash value 8
ATC 0 0
CCG 0 0
TCC 5 1
CGC 6 1
0
0
/0

Queries :

m.

Is the k-mer ATA (hash ¥alue 9

AAA (hash value 0 ¥ present ? Yes, maybe : either a true or a false positive.

5/21

Set of nodes : {TAT,ATC,CGC,CTA, CCG, TCC,GCT}
Graph as stored in a Bloom filter : [Pell et al 12]

CCD

T &
®®®

Black nodes : true positives ; Red nodes : false positives

6/21

Insight : to traverse the graph from true positive nodes, only a small
fraction of the false positives need to be avoided (critical false positives, CFP).

g
gé

&

=
o

ON

7/21

Proposed method

Store nodes on disk for sequential enumeration,
and in memory store the Bloom filter + the critical FPs explicitly.

Bloom filter
1
0
0
0 CGA
0
1
1
0
0
0
Nodes self-information : Our structure size :
) 4 30 bi 10 + 3-6 =28bits
[ng 7] - 1ts Bloom Crit. false pos.

8/21

Analysis

9/21

Construction time (for n nodes)
Assume that k-mer arithmetic takes constant time.

» Bloom filter construction : O(n)
» cFP construction :

> Enumeration of neighbors of all graph nodes, keeping only Bloom-positive
neighbors : O(n)

> Intersection between Bloom-positive neighbors and nodes, with limited
memory usage : O(log% 1)

9/21

Structure size (bits’lk—mer)

80 100

60

OPTIMAL BLOOM FILTER SIZE

Structure size per k—-mer, k=27

- Total = Bloom Filter + cFP
---- Bloom Filter
— cFP

Optimal Size

\ \ T \ \ \ \
i
0 5 l% 15 20 25 30

Size of the Bloom filter (bits / k-mer)

10/21

Structure size (bits’lk—mer)

DEPENDENCE ON THE PARAMETER k

Optimal structure size per k—-mer

0 |

N = Total = Bloom Filter + cFP
o | ---- Bloom Filter

N — CcFP

0 _|

—

o _|

—

0o -

o -

I I I I I
0 20 40 60 80 100

k—-mer size

11/21

Result statement

The de Bruijn graph can be encoded using

2.08

Bloom

1.44lo0g,(>—2) +&9§
—_———

cFP

bits of memory per node.

k = 25 : 13 bits per node.

» Below the self-information (20 bits/node for k = 25)

> The part stored in memory doesn’t support enumeration of nodes, only
traversal

Graph-based assemblers typically modify the graph to remove artifacts
(variants, errors).

Is it possible to perform de novo assembly with this (immutable) structure ?
— Yes, using localized traversal. [RC DL, WABI 11]

12/21

Assembly aspects

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

= Won't traverse : long branches
->6-0—~0-0-0-> 5, A A Bk
->»8
- //” ~—-0—-0—0-
BFS from s until a depth of breadth 1 BES from s, breadth remains > 1 for
is reached, keeping breadth < b and depths 1..d
depth < d

Example : Whole graph

AWAN

o
o~

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

= Won't traverse : long branches
-y8— = = —ot-> 5, A A Bk
->»8
oy ~—-0—-0—0-
BFS from s until a depth of breadth 1 BES from s, breadth remains > 1 for
is reached, keeping breadth < b and depths 1..d
depth < d

Example : Start with an empty graph

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

= Won't traverse : long branches
->6-0—~0-0-0-> 5, A A Bk
->»8
oy -0—-0-0-
BFS from s until a depth of breadth 1 BES from s, breadth remains > 1 for
is reached, keeping breadth < b and depths 1..d
depth < d

Example : Pick a new node, construct the first portion

-
N
o=t ~

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs
Won't traverse : long branches

-
->6-0—~0-0-0-> 5, A A Bk
->»8
- ~—-0—-0—0-
BFS from s until a depth of breadth 1 BES from s, breadth remains > 1 for
is reached, keeping breadth < b and depths 1..d
depth < d

Example : Construct the second portion

-
R ~
O—i,

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

— Won't traverse : long branches
-»8 = = = =t 5. a4 i nd Ak
-8
- —0—0—0-
BFS from s until a depth of breadth 1 BES from s, breadth remains > 1 for
is reached, keeping breadth < b and depths 1..d
depth < d

Example: Construct the third portion

e ®
S >~ 0 7

—@)—

13/21

ASSEMBLER IMPLEMENTATION

k-mer counting »

Graph traversal »

Contigs construction

Need to determine the set of solid nodes (seen
> x times)

Current methods (e.g. Jellyfish) require more
memory than our structure

We designed a constant-memory k-mer counting
procedure

Nodes which have already been traversed need to
be marked

No extra information can be stored in our
structure

We used a separate hash table to remember if
branching or dead-end nodes have already been
visited.

Consensus from each path obtained by localized
traversal

14/21

Results

15/21

USEFULNESS OF CFP STRUCTURE

Probabilistic de Bruijn graph Probabilistic dBG and cFP structure
50 50
B Marking struct. @ Crit. false pos.

40 @ Bloom filter 40 B Marking struct. [
@ Bloom filter =R

[5) E

30 =3

% 2

20 22

£8

10 =
0 =
_:Q
5 7 9 11 13 15 17 19 5 7 9 11 13 15 17 19 .»éé
>
TR 7% T N T T T Y O I A B B 93
. E 100 | L 2 g

S e e o e 4 o . [}
LS e s |||||||||||||||°E£
Bloom filter size (bits/kmer) Bloom filter size (bits/kmer) [§
[}

Assembly : E. coli, k = 23

15/21

COMPLETE de novo HUMAN GENOME ASSEMBLY

N50 : length I at which half of the assembly contains sequences of length > I

Human genome assembly Minia C.&B. ABySS SOAPdenovo
Contig N50 (bp) 1156 250 870 886

Sum (Gbp) 2.09 1.72 2.10 2.08

> 95% Accuracy (%) 94.6 - 94.2 -

Nb of nodes/cores 1/1 1/8 21/168 1/40

Time (wall-clock, h) 23 50 15 33

Memory (sum of nodes, GB) 5.7 32 336 140

16/21

ROUGH PERFORMANCE COMPARISON WITH OTHER HUMAN
GENOME ASSEMBLIES

350 -
Time (h) C—3
300 + - Memory (GB)
250
200

150

100 -

Celera ABySS SOAP Monument SGA Minia
(2000) (2009) (2009) (2011) (2012) (2012)

17/21

Perspectives

18/21

PERSPECTIVES

Applications
Why assemble a human genome again ?
» To exhibit novel structural variations [Igbal 11]

> As a benchmark, for the immense number of (meta)genomes that will be
sequenced next

Future of sequencing

Predictions :
DNA assembly Relevant until 10-100 kbp high-accuracy read lengths

RNA assembly, metagenomics and metatranscriptomics No announced
technology other than Illumina permits high depth of
sampling.

— My opinion is that short-read assembly (with paired reads) will remain a
hot topic for a few years.

18/21

PERSPECTIVES

Potential applications of Minia codebase :

>

>

>

Huge metagenomic assemblies (with Genoscope)
Transcriptome assembly (Inchworm replacement)
Alternative splicing detection (KisSplice module replacement)
SNP detection (KisSnp 2, with R. Uricaru & P. Peterlongo)
Structural variants detection

Gap-filling of scaffolds

Read compression

19/21

AVAILABILITY

Manuscript available at minia.genouest .org.

To obtain the source code of Minia (pending license) :

Now Email me

Next month Website above

20/21

minia.genouest.org

Acknowledgements : Dominique Lavenier, GenScale team (IRISA, France)

Thank you! Any questions ?

21/21

	Presentation of the data structure
	Analysis
	Assembly aspects
	Results
	Perspectives

