
Space-efficient and exact de Bruijn graph representation
based on a Bloom filter

Rayan Chikhi, Guillaume Rizk

ENS Cachan Brittany / IRISA, France
AlgoRizk, France

WABI 2012

1/21

TRANSITION FROM THE PREVIOUS TALK

The previous talk dealed with a succinct de Bruijn graph representation.
This talk covers exactly the same topic, with some differences :

I (Hopefully) simpler data structure
I Less succinct
I Implemented in an assembly program

2/21

OUTLINE

Presentation of the data structure

Analysis

Assembly aspects

Results

Perspectives

3/21

Presentation of the data structure

4/21

de Bruijn graph [Idury, Waterman 95]

Nodes are k-mers, edges are (k− 1)-overlaps between nodes.

GAT ATT TTA TAC ACA CAA

Only nodes need to be encoded, as edges are inferred.

How to encode the de Bruijn graph using as little space as possible ?

Memory usage (illustration for k = 25)

I Explicit list : 2k · n bits 50 bits per node
I Self-information of n nodes : [Conway, Bromage 11]

log2

((
4k

n

))
bits

20 bits per node.

4/21

Bloom filter
Bit array to represent any set with a “precision” of ε.

I a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k-mers in a Bloom filter :

k-mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k-mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

5/21

Bloom filter
Bit array to represent any set with a “precision” of ε.

I a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k-mers in a Bloom filter :

k-mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k-mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

5/21

Bloom filter
Bit array to represent any set with a “precision” of ε.

I a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k-mers in a Bloom filter :

k-mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k-mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

5/21

Set of nodes : {TAT,ATC,CGC,CTA,CCG,TCC,GCT}
Graph as stored in a Bloom filter : [Pell et al 12]

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT

Black nodes : true positives ; Red nodes : false positives

6/21

Insight : to traverse the graph from true positive nodes, only a small
fraction of the false positives need to be avoided (critical false positives, CFP).

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT

7/21

Proposed method

Store nodes on disk for sequential enumeration,
and in memory store the Bloom filter + the critical FPs explicitly.

Bloom filter
1
0
0
0
0
1
1
0
0
0

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG
CCG

TTG
TCC

GCT

Nodes self-information :

dlog2

(
43

7

)
e = 30 bits

Our structure size :

10︸︷︷︸
Bloom

+ 3 · 6︸︷︷︸
Crit. false pos.

= 28 bits

8/21

Analysis

9/21

Construction time (for n nodes)
Assume that k-mer arithmetic takes constant time.

I Bloom filter construction : O(n)
I cFP construction :

I Enumeration of neighbors of all graph nodes, keeping only Bloom-positive
neighbors : O(n)

I Intersection between Bloom-positive neighbors and nodes, with limited
memory usage : O(k

log(k)n)

9/21

OPTIMAL BLOOM FILTER SIZE

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Structure size per k−mer, k=27

Size of the Bloom filter (bits / k−mer)

S
tr

uc
tu

re
 s

iz
e

(b
its

/k
−

m
er

) Total = Bloom Filter + cFP
Bloom Filter
cFP

●

Optimal Size

11
.1

13.2

10/21

DEPENDENCE ON THE PARAMETER k

0 20 40 60 80 100

0
5

10
15

20
25

Optimal structure size per k−mer

k−mer size

S
tr

uc
tu

re
 s

iz
e

(b
its

/k
−

m
er

) Total = Bloom Filter + cFP
Bloom Filter
cFP

11/21

Result statement
The de Bruijn graph can be encoded using

1.44 log2(
16k
2.08

)︸ ︷︷ ︸
Bloom

+ 2.08︸︷︷︸
cFP

bits of memory per node.
k = 25 : 13 bits per node.

I Below the self-information (20 bits/node for k = 25)
I The part stored in memory doesn’t support enumeration of nodes, only

traversal

Graph-based assemblers typically modify the graph to remove artifacts
(variants, errors).
Is it possible to perform de novo assembly with this (immutable) structure ?
→ Yes, using localized traversal. [RC DL, WABI 11]

12/21

Assembly aspects

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Whole graph

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Start with an empty graph

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Pick a new node, construct the first portion

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Construct the second portion

13/21

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Construct the third portion

13/21

ASSEMBLER IMPLEMENTATION

k-mer counting I Need to determine the set of solid nodes (seen
≥ x times)

I Current methods (e.g. Jellyfish) require more
memory than our structure

I We designed a constant-memory k-mer counting
procedure

Graph traversal I Nodes which have already been traversed need to
be marked

I No extra information can be stored in our
structure

I We used a separate hash table to remember if
branching or dead-end nodes have already been
visited.

Contigs construction Consensus from each path obtained by localized
traversal

14/21

Results

15/21

USEFULNESS OF CFP STRUCTURE

5 7 9 11 13 15 17 19

0

10

20

30

40

50
Marking struct.
Bloom filter

Probabilistic de Bruijn graph

● ● ●
●

●
● ● ● ● ● ● ● ● ● ● 3

100

4527

Bloom filter size (bits/kmer)

5 7 9 11 13 15 17 19

0

10

20

30

40

50
Crit. false pos.
Marking struct.
Bloom filter

W
ho

le
 s

tr
uc

tu
re

si
ze

 (
bi

ts
/k

m
er

)

Probabilistic dBG and cFP structure

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0

Bloom filter size (bits/kmer) D
iff

er
en

ce
s

w
ith

ex
ac

t a
ss

em
bl

y
(K

bp
)

Assembly : E. coli, k = 23

15/21

COMPLETE de novo HUMAN GENOME ASSEMBLY

N50 : length l at which half of the assembly contains sequences of length ≥ l

Human genome assembly Minia C. & B. ABySS SOAPdenovo

Contig N50 (bp) 1156 250 870 886
Sum (Gbp) 2.09 1.72 2.10 2.08
> 95% Accuracy (%) 94.6 - 94.2 -

Nb of nodes/cores 1/1 1/8 21/168 1/40
Time (wall-clock, h) 23 50 15 33
Memory (sum of nodes, GB) 5.7 32 336 140

16/21

ROUGH PERFORMANCE COMPARISON WITH OTHER HUMAN
GENOME ASSEMBLIES

17/21

Perspectives

18/21

PERSPECTIVES

Applications

Why assemble a human genome again ?
I To exhibit novel structural variations [Iqbal 11]
I As a benchmark, for the immense number of (meta)genomes that will be

sequenced next

Future of sequencing

Predictions :

DNA assembly Relevant until 10-100 kbp high-accuracy read lengths

RNA assembly, metagenomics and metatranscriptomics No announced
technology other than Illumina permits high depth of
sampling.

→My opinion is that short-read assembly (with paired reads) will remain a
hot topic for a few years.

18/21

PERSPECTIVES

Potential applications of Minia codebase :
I Huge metagenomic assemblies (with Genoscope)
I Transcriptome assembly (Inchworm replacement)
I Alternative splicing detection (KisSplice module replacement)
I SNP detection (KisSnp 2, with R. Uricaru & P. Peterlongo)
I Structural variants detection
I Gap-filling of scaffolds
I Read compression

19/21

AVAILABILITY

Manuscript available at minia.genouest.org.
To obtain the source code of Minia (pending license) :

Now Email me

Next month Website above

20/21

minia.genouest.org

Acknowledgements : Dominique Lavenier, GenScale team (IRISA, France)

Thank you ! Any questions ?

21/21

	Presentation of the data structure
	Analysis
	Assembly aspects
	Results
	Perspectives

